1
|
Chen T, Zhang C, Cheng L, Ng KB, Malbrunot-Ettenauer S, Flambaum VV, Lasner Z, Doyle JM, Yu P, Conn CJ, Zhang C, Hutzler NR, Jayich AM, Augenbraun B, DeMille D. Relativistic Exact Two-Component Coupled-Cluster Study of Molecular Sensitivity Factors for Nuclear Schiff Moments. J Phys Chem A 2024. [PMID: 39047199 DOI: 10.1021/acs.jpca.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector. Notably, these tools enable straightforward "black-box" calculations. Two competing chemical mechanisms that contribute to the NSM are analyzed, illuminating the physics of ligand effects on NSM sensitivity factors.
Collapse
Affiliation(s)
- Tianxiang Chen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kia Boon Ng
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Stephan Malbrunot-Ettenauer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, University of Toronto, Toronto M5S 1A7, Canada
| | - Victor V Flambaum
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Zack Lasner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - Phelan Yu
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Chandler J Conn
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Chi Zhang
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew M Jayich
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Benjamin Augenbraun
- Department of Chemistry, Williams College, 47 Lab Campus Drive, Williamstown, Massachusetts 01267, United States
| | - David DeMille
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Zheng X, Zhang C, Liu J, Cheng L. Geometry Optimizations with Spinor-Based Relativistic Coupled-Cluster Theory. J Chem Phys 2022; 156:151101. [DOI: 10.1063/5.0086281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Development of analytic gradients for relativistic coupled-cluster singles and doubles augmented with a non-iterative triples [CCSD(T)] method using an all-electron exact two-component Hamiltonian with atomic mean-field spin-orbit integrals (X2CAMF) is reported. This enables efficient CC geometry optimizations with spin-orbit coupling included in orbitals. The applicability of the implementation is demonstrated using benchmark X2CAMF-CCSD(T) calculations of equilibrium structures and harmonic vibrational frequencies for methyl halides, CH3X, X=Br, I, At, as well as calculations of rotational constants and infrared spectrum for RaSH+, a radioactive molecular ion of interest to spectroscopic study.
Collapse
Affiliation(s)
- Xuechen Zheng
- Johns Hopkins University Department of Chemistry, United States of America
| | - Chaoqun Zhang
- Johns Hopkins University Department of Chemistry, United States of America
| | - Junzi Liu
- Chemistry, Johns Hopkins University Department of Chemistry, United States of America
| | - Lan Cheng
- Chemistry, Johns Hopkins University Department of Chemistry, United States of America
| |
Collapse
|
3
|
Hu SX, Zou W. Stable copernicium hexafluoride (CnF 6) with an oxidation state of VI. Phys Chem Chem Phys 2021; 24:321-325. [PMID: 34889909 DOI: 10.1039/d1cp04360a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the heaviest group 12 element known currently, copernicium (Cn) often presents the oxidation states of I+, II+, and rarely IV+ as in its homologue mercury. In this work we systematically studied the stability of some oxides, fluorides, and oxyfluorides of Cn by two-component relativistic calculations and found that the CnF6 molecule with an oxidation state of VI+ has an extraordinary stability. CnF6 may decompose into CnF4 by conquering an energy barrier of about 34 kcal mol-1 without markedly releasing heat. Our results indicate that CnF6 may exist under some special conditions.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.
| |
Collapse
|
4
|
Guo M, Wang Z, Lu Y, Wang F. Energy correction and analytic energy gradients due to triples in CCSD(T) with spin–orbit coupling on graphic processing units using single-precision data. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1974591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Zhifan Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, People’s Republic of China
- School of Electronic Engineering, Chengdu Technological University, Chengdu, People’s Republic of China
| | - Yanzhao Lu
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Cao Z, Zhou X, Zhang Y, Qi J. Coupled-cluster method for the electronic structure and spectroscopic constants in halohydride cations with spin–orbit coupling. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Liu J, Cheng L. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Junzi Liu
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| | - Lan Cheng
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
7
|
Liu J, Zheng X, Asthana A, Zhang C, Cheng L. Analytic evaluation of energy first derivatives for spin-orbit coupled-cluster singles and doubles augmented with noniterative triples method: General formulation and an implementation for first-order properties. J Chem Phys 2021; 154:064110. [PMID: 33588557 DOI: 10.1063/5.0038779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A formulation of analytic energy first derivatives for the coupled-cluster singles and doubles augmented with noniterative triples [CCSD(T)] method with spin-orbit coupling included at the orbital level and an implementation for evaluation of first-order properties are reported. The standard density-matrix formulation for analytic CC gradient theory adapted to complex algebra has been used. The orbital-relaxation contributions from frozen core, occupied, virtual, and frozen virtual orbitals to analytic spin-orbit CCSD(T) gradients are fully taken into account and treated efficiently, which is of importance to calculations of heavy elements. Benchmark calculations of first-order properties including dipole moments and electric-field gradients using the corresponding exact two-component property integrals are presented for heavy-element containing molecules to demonstrate the applicability and usefulness of the present analytic scheme.
Collapse
Affiliation(s)
- Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayush Asthana
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
8
|
Guo M, Wang Z, Wang F. Equation-of-motion coupled-cluster theory for double electron attachment with spin-orbit coupling. J Chem Phys 2020; 153:214118. [PMID: 33291924 DOI: 10.1063/5.0032716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report implementation of the equation-of-motion coupled-cluster (EOM-CC) method for double electron-attachment (DEA) with spin-orbit coupling (SOC) at the CC singles and doubles (CCSD) level using a closed-shell reference in this work. The DEA operator employed in this work contains two-particle and three-particle one-hole excitations, and SOC is included in post-Hartree-Fock treatment. Time-reversal symmetry and spatial symmetry are exploited to reduce computational cost. The EOM-DEA-CCSD method with SOC allows us to investigate SOC effects of systems with two-unpaired electrons. According to our results on atoms, double ionization potentials (DIPs), excitation energies (EEs), and SO splittings of low-lying states are calculated reliably using the EOM-DEA-CCSD method with SOC. Its accuracy is usually higher than that of EOM-CCSD for EEs or DIPs if the same target can be reached from single excitations by choosing a proper closed-shell reference. However, performance of the EOM-DEA-CCSD method with SOC on molecules is not as good as that for atoms. Bond lengths for the ground and the several lowest excited states of GaH, InH, and TlH are underestimated pronouncedly, although reasonable EEs are obtained, and splittings of the 3Σ- state from the π2 configuration are calculated to be too small with EOM-DEA-CCSD.
Collapse
Affiliation(s)
- Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhifan Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
9
|
Guo M, Wang Z, Wang F. Treating spin-orbit coupling at different levels in equation-of-motion coupled-cluster calculations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1785029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Zhifan Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Matthews DA, Cheng L, Harding ME, Lipparini F, Stopkowicz S, Jagau TC, Szalay PG, Gauss J, Stanton JF. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J Chem Phys 2020; 152:214108. [DOI: 10.1063/5.0004837] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael E. Harding
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, D-76131 Karlsruhe, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Thomas-C. Jagau
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - John F. Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
11
|
Bokhan D, Trubnikov DN, Perera A, Bartlett RJ. Similarity-transformed equation-of-motion coupled-cluster singles and doubles method with spin-orbit effects for excited states. J Chem Phys 2019; 151:134110. [PMID: 31594332 DOI: 10.1063/1.5121373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The similarity transformed equation-of-motion coupled-cluster method (STEOM-CCSD) for excited states is extended to treat spin-orbit coupling interactions (SOIs) using the spin-orbit mean field approximation of the Breit-Pauli Hamiltonian. Two possible schemes to include the spin-orbit splittings of excited states within the STEOM-CCSD model are formulated. They are identified as "diagonalize-then-perturb" and "perturb-then-diagonalize" approaches. The second approach is more suited for cases where SOI is larger, and the first approach breaks down. With the aid of the standard many-body diagrammatic techniques, expressions for all the necessary matrix elements can be derived. These new formulations are implemented in the ACES III suite of parallel coupled cluster programs, and benchmark studies are performed. Numerical tests for several atoms and molecules show a good agreement of calculated spin-orbit splittings to experiment, while also documenting the numerical differences between the two approaches.
Collapse
Affiliation(s)
- Denis Bokhan
- Laboratory of Molecular Beams, Physical Chemistry Division, Department of Chemistry, Moscow Lomonosov State University, Moscow 119991, Russian Federation
| | - Dmitrii N Trubnikov
- Laboratory of Molecular Beams, Physical Chemistry Division, Department of Chemistry, Moscow Lomonosov State University, Moscow 119991, Russian Federation
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
12
|
Bokhan D, Trubnikov DN, Perera A, Bartlett RJ. Spin-orbit split ionized and electron-attached states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Zhou X, Cao Z, Wang F. Analytical energy gradients for ionized states using equation-of-motion coupled-cluster theory with spin-orbit coupling. J Chem Phys 2019; 150:154114. [PMID: 31005096 DOI: 10.1063/1.5088639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spin-orbit coupling (SOC) may have a significant effect on the structure and harmonic frequencies of particularly heavy p-block element compounds. However, reports on analytical energy gradients with SOC are scarce, especially for excited states. In this work, we implemented analytical energy gradients for ionized states using the equation-of-motion coupled-cluster (CC) theory at the CC singles and doubles level (EOM-IP-CCSD) with SOC. Effects of SOC on structure and harmonic frequencies as well as properties for both the ground and some excited states of open-shell compounds with one unpaired electron can be investigated efficiently with the present implementation. A closed-shell reference is required in the calculations, and SOC is included in post-Hartree-Fock treatment. Relativistic effective core potentials are employed in dealing with both scalar relativistic effects and SOC, and we treat perturbations that are even under time reversal in this work. Both time-reversal symmetry and double point group symmetry for D2h * and its subgroups are exploited in the implementation. The method is applicable to states which can be reached by removing one electron from a closed-shell reference state. The results of some open-shell cations indicate the importance of SOC on structures and harmonic frequencies of heavy element compounds.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Zhanli Cao
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Wang Z, Wang F. Equation-of-motion coupled-cluster method for ionised states with spin-orbit coupling using open-shell reference wavefunction. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1439188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhifan Wang
- School of Electronic Engineering, Chengdu Technological University, Chengdu, P. R.China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
15
|
Guo M, Cao Z, Wang Z, Wang F. Properties of closed-shell superheavy element hydrides and halides using coupled-cluster method and density functional theory with spin-orbit coupling. J Chem Phys 2018; 148:044304. [DOI: 10.1063/1.5011648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Zhanli Cao
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, People’s Republic of China
| | - Zhifan Wang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
16
|
Minenkov Y, Cavallo L. Ground-State Gas-Phase Structures of Inorganic Molecules Predicted by Density Functional Theory Methods. ACS OMEGA 2017; 2:8373-8387. [PMID: 31457376 PMCID: PMC6645218 DOI: 10.1021/acsomega.7b01203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/01/2017] [Indexed: 06/10/2023]
Abstract
We tested a battery of density functional theory (DFT) methods ranging from generalized gradient approximation (GGA) via meta-GGA to hybrid meta-GGA schemes as well as Møller-Plesset perturbation theory of the second order and a single and double excitation coupled-cluster (CCSD) theory for their ability to reproduce accurate gas-phase structures of di- and triatomic molecules derived from microwave spectroscopy. We obtained the most accurate molecular structures using the hybrid and hybrid meta-GGA approximations with B3PW91, APF, TPSSh, mPW1PW91, PBE0, mPW1PBE, B972, and B98 functionals, resulting in lowest errors. We recommend using these methods to predict accurate three-dimensional structures of inorganic molecules when intramolecular dispersion interactions play an insignificant role. The structures that the CCSD method predicts are of similar quality although at considerably larger computational cost. The structures that GGA and meta-GGA schemes predict are less accurate with the largest absolute errors detected with BLYP and M11-L, suggesting that these methods should not be used if accurate three-dimensional molecular structures are required. Because of numerical problems related to the integration of the exchange-correlation part of the functional and large scattering of errors, most of the Minnesota models tested, particularly MN12-L, M11, M06-L, SOGGA11, and VSXC, are also not recommended for geometry optimization. When maintaining a low computational budget is essential, the nonseparable gradient functional N12 might work within an acceptable range of error. As expected, the DFT-D3 dispersion correction had a negligible effect on the internuclear distances when combined with the functionals tested on nonweakly bonded di- and triatomic inorganic molecules. By contrast, the dispersion correction for the APF-D functional has been found to shorten the bonds significantly, up to 0.064 Å (AgI), in Ag halides, BaO, BaS, BaF, BaCl, Cu halides, and Li and Na halides and hydrides. These results do not agree well with very accurate structures derived from microwave spectroscopy; we therefore believe that the dispersion correction in the APF-D method should be reconsidered. Finally, we found that inaccurate structures can easily lead to errors of few kcal/mol in single-point energies.
Collapse
Affiliation(s)
- Yury Minenkov
- Physical Science and Engineering Division
(PSE), KAUST Catalysis Center (KCC), King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Science and Engineering Division
(PSE), KAUST Catalysis Center (KCC), King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Bokhan D, Perera A, Trubnikov DN, Bartlett RJ. Excitation energies with spin-orbit couplings using equation-of-motion coupled-cluster singles and doubles eigenvectors. J Chem Phys 2017; 147:164118. [DOI: 10.1063/1.4997376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis Bokhan
- Laboratory of Molecular Beams, Physical Chemistry Division, Department of Chemistry, Moscow Lomonosov State University, Moscow 119991, Russian Federation
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Dmitrii N. Trubnikov
- Laboratory of Molecular Beams, Physical Chemistry Division, Department of Chemistry, Moscow Lomonosov State University, Moscow 119991, Russian Federation
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
18
|
Jiao Y, Dibble TS. Structures, Vibrational Frequencies, and Bond Energies of the BrHgOX and BrHgXO Species Formed in Atmospheric Mercury Depletion Events. J Phys Chem A 2017; 121:7976-7985. [DOI: 10.1021/acs.jpca.7b06829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuge Jiao
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York 13210, United States
| | - Theodore S. Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York 13210, United States
| |
Collapse
|
19
|
Cao Z, Wang F, Yang M. Coupled-cluster method for open-shell heavy-element systems with spin-orbit coupling. J Chem Phys 2017; 146:134108. [DOI: 10.1063/1.4979491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhanli Cao
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
20
|
Shee A, Visscher L, Saue T. Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling. J Chem Phys 2016; 145:184107. [DOI: 10.1063/1.4966643] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Avijit Shee
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), CNRS/Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | - Lucas Visscher
- Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), CNRS/Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| |
Collapse
|
21
|
Cao Z, Wang F, Yang M. Spin-orbit coupling with approximate equation-of-motion coupled-cluster method for ionization potential and electron attachment. J Chem Phys 2016; 145:154110. [DOI: 10.1063/1.4964859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Zhanli Cao
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
22
|
Gao DD, Cao Z, Wang F. Spin–Orbit Effects in Closed-Shell Heavy and Superheavy Element Monohydrides and Monofluorides with Coupled-Cluster Theory. J Phys Chem A 2016; 120:1231-42. [DOI: 10.1021/acs.jpca.5b11948] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dong-Dong Gao
- Institute
of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, P. R. China
| | - Zhanli Cao
- Institute
of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, P. R. China
| | - Fan Wang
- Institute
of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, P. R. China
- Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
23
|
Wang Z, Tu Z, Wang F. Equation-of-Motion Coupled-Cluster Theory for Excitation Energies of Closed-Shell Systems with Spin-Orbit Coupling. J Chem Theory Comput 2015; 10:5567-76. [PMID: 26583239 DOI: 10.1021/ct500854m] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Excitation energies of closed-shell systems based on the equation-of-motion (EOM) coupled-cluster theory at the singles and doubles (CCSD) level with spin-orbit coupling (SOC) included in the post-Hartree-Fock treatment are implemented in the present work. SOC can be included in both the CC and EOM steps (EOM-SOC-CCSD) or only in the EOM part (SOC-EOM-CCSD). The latter approach is an economical way to account for SOC effects, but excitation energies with this approach are not size-intensive. When the unlinked term in the latter approach is neglected (cSOC-EOM-CCSD), size-intensive excitation energies can be obtained. Time-reversal symmetry and spatial symmetry are exploited to reduce the computational effort. Imposing time-reversal symmetry results in a real matrix representation for the similarity-transformed Hamiltonian, which facilitates the requirement of time-reversal symmetry for new trial vectors in Davidson's algorithm. Results on some closed-shell atoms and molecules containing heavy elements show that EOM-SOC-CCSD can provide excitation energies and spin-orbit splittings with reasonable accuracy. On the other hand, the SOC-EOM-CCSD approach is able to afford accurate estimates of SOC effects for valence electrons of systems containing elements up to the fifth row, while cSOC-EOM-CCSD is less accurate for spin-orbit splittings of transitions involving p1/2 spinors, even for Kr.
Collapse
Affiliation(s)
- Zhifan Wang
- Institute of Atomic and Molecular Physics, Sichuan University , Chengdu 610064, P. R. China
| | - Zheyan Tu
- School of Science, Xi'an Polytechnic University , Xi'an, Shaanxi 710048, P. R. China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Sichuan University , Chengdu 610064, P. R. China
| |
Collapse
|
24
|
Zou W, Filatov M, Cremer D. Analytical energy gradient for the two-component normalized elimination of the small component method. J Chem Phys 2015; 142:214106. [DOI: 10.1063/1.4921915] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenli Zou
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, USA
| | - Michael Filatov
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, USA
| |
Collapse
|
25
|
Gupta J, Vaval N, Pal S. A Lagrange multiplier approach for excited state properties through intermediate Hamiltonian formulation of Fock space multireference coupled-cluster theory. J Chem Phys 2013; 139:074108. [DOI: 10.1063/1.4817943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
26
|
Yang DD, Wang F. Structures and stabilities of group 17 fluorides EF3 (E = I, At, and element 117) with spin-orbit coupling. Phys Chem Chem Phys 2012; 14:15816-25. [PMID: 23090670 DOI: 10.1039/c2cp42108a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a recently developed CCSD(T) approach with spin-orbit coupling (SOC) as well as density functional theory (DFT) using various exchange-correlation (XC) functionals are employed to investigate structures and stabilities of group 17 fluorides EF(3) (E = I, At, and element 117). These molecules are predicted to have bent T-shaped C(2v) structures according to the second-order Jahn-Teller (SOJT) effects or the valance shell electron pair repulsion (VSEPR) theory. For IF(3) and (117)F(3), our results are consistent with previous SOC-DFT calculations. However, different XC functionals provide different results for AtF(3) and our SOC-CCSD(T) calculations show that both the C(2v) and D(3h) structures are minima on the potential energy surface and the C(2v) structure is the global minimum for AtF(3). The performance of XC functionals on structures and stabilities of IF(3) and AtF(3) is found to depend on the fraction of the Hartree-Fock exchange (HFX) included in the XC functionals and the M06-2X functional with 54% of HFX providing results that agree best with CCSD(T) results. In addition, although both the C(2v) and D(3h) structures are minima for AtF(3), the energy barrier between them is only 8 kJ mol(-1) for the C(2v) structure and 0.05 kJ mol(-1) for the D(3h) structure. This indicates that the D(3h) structure could not possibly be observed experimentally and AtF(3) can convert easily between the three C(2v) structures. The SOJT term is shown to be reduced by electron correlation for IF(3) and AtF(3). On the other hand, although SOC decreases the energy difference between the C(2v) and D(3h) structures and reduces the deviation of the C(2v) structure from the D(3h) structure, it decreases the frequency of the bond bending mode, which may indicate that SOC actually increases the SOJT term. This could be related to mixing of spin-singlet E' states to low-energy spin-triplet states due to SOC.
Collapse
Affiliation(s)
- Dong-Dong Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R.China
| | | |
Collapse
|
27
|
Tu Z, Wang F, Li X. Equation-of-motion coupled-cluster method for ionized states with spin-orbit coupling. J Chem Phys 2012; 136:174102. [DOI: 10.1063/1.4704894] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Yang DD, Wang F, Guo J. Equation of motion coupled cluster method for electron attached states with spin–orbit coupling. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
RAVICHANDRAN LALITHA, BHATTACHARYA DEBARATI, VAVAL NAYANA, PAL SOURAV. Fock-space multi-reference coupled-cluster response with the effect of triples on dipole moment of ClO and SF radicals#. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0220-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
|
31
|
Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem Rev 2012; 112:543-631. [DOI: 10.1021/cr2002239] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Trygve Helgaker
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Poul Jørgensen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper Kristensen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Olsen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
32
|
Tu Z, Yang DD, Wang F, Guo J. Symmetry exploitation in closed-shell coupled-cluster theory with spin-orbit coupling. J Chem Phys 2011; 135:034115. [DOI: 10.1063/1.3611052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Ravichandran L, Vaval N, Pal S. Effect of Triples to Dipole Moments in Fock-Space Multireference Coupled Cluster Method. J Chem Theory Comput 2011; 7:876-83. [PMID: 26606338 DOI: 10.1021/ct1007263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this paper, we present the new implementation of partial triples for the dipole moment of doublet radicals in Lagrangian formulation of Fock-space multireference coupled cluster (Λ-FSMRCC) response method. We have implemented a specific scheme of noniterative triples, in addition to singles and doubles schemes, which accounts for the effects appearing at least at the third order in dipole moments. The method is applied to the ground states of OH, OOH, HCOO, CN, CH, and PO radicals.
Collapse
Affiliation(s)
| | - Nayana Vaval
- Physical Chemistry Division, National Chemical Laboratory , Pune-411008, India
| | - Sourav Pal
- Physical Chemistry Division, National Chemical Laboratory , Pune-411008, India
| |
Collapse
|
34
|
Wang F, Gauss J. Analytic second derivatives in closed-shell coupled-cluster theory with spin-orbit coupling. J Chem Phys 2009; 131:164113. [DOI: 10.1063/1.3245954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Giordani M, Grandinetti F. Protonated MF3 (M=N–Bi): Structure, stability, and thermochemistry of the H–MF3+ and HF–MF2+ isomers. J Fluor Chem 2009. [DOI: 10.1016/j.jfluchem.2009.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|