1
|
Dean JLS, Winkler VS, Boyer MA, Sibert EL, Fournier JA. Investigating Intramolecular H Atom Transfer Dynamics in β-Diketones with Ultrafast Infrared Spectroscopies and Theoretical Modeling. J Phys Chem A 2023; 127:9258-9272. [PMID: 37882618 DOI: 10.1021/acs.jpca.3c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The vibrational signatures and ultrafast dynamics of the intramolecular H-bond in a series of β-diketones are investigated with 2D IR spectroscopy and computational modeling. The chosen β-diketones exhibit a range of H atom donor-acceptor distances and asymmetry along the H atom transfer coordinate that tunes the intramolecular H-bond strength. The species with the strongest H-bonds are calculated to have very soft H atom potentials, resulting in highly red-shifted OH stretch fundamental frequencies and dislocation of the H atom upon vibrational excitation. These soft potentials lead to significant coupling to the other normal mode coordinates and give rise to the very broad vibrational signatures observed experimentally. The 2D IR spectra in both the OH and OD stretch regions of the light and deuterated isotopologues reveal broadened and long-lived ground-state bleach signatures of the vibrationally hot molecules. Polarization-sensitive transient absorption measurements in the OH and OD stretch regions reveal notable isotopic differences in orientational dynamics. Orientational relaxation was measured to occur on ∼600 fs and ∼2 ps time scales for the light and deuterated isotopologues, respectively. The orientational dynamics are interpreted in terms of activated H/D atom transfer events driven by collective intramolecular structural rearrangements.
Collapse
Affiliation(s)
- Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Valerie S Winkler
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Mark A Boyer
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Edwin L Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Li F, Yang X, Liu X, Cao J, Bian W. An Ab Initio Neural Network Potential Energy Surface for the Dimer of Formic Acid and Further Quantum Tunneling Dynamics. ACS OMEGA 2023; 8:17296-17303. [PMID: 37214673 PMCID: PMC10193396 DOI: 10.1021/acsomega.3c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
We construct a full-dimensional ab initio neural network potential energy surface (PES) for the isomerization system of the formic acid dimer (FAD). This is based upon ab initio calculations using the DLPNO-CCSD(T) approach with the aug-cc-pVTZ basis set, performed at over 14000 symmetry-unique geometries. An accurate fit to the obtained energies is generated using a general neural network fitting procedure combined with the fundamental invariant method, and the overall energy-weighted root-mean-square fitting error is about 6.4 cm-1. Using this PES, we present a multidimensional quantum dynamics study on tunneling splittings with an efficient theoretical scheme developed by our group. The ground-state tunneling splitting of FAD calculated with a four-mode coupled method is in good agreement with the most recent experimental measurements. The PES can be applied for further dynamics studies. The effectiveness of the present scheme for constructing a high-dimensional PES is demonstrated, and this scheme is expected to be feasible for larger molecular systems.
Collapse
Affiliation(s)
- Fengyi Li
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Xingyu Yang
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Xiaoxi Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Jianwei Cao
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wensheng Bian
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
3
|
Bhattacharyya D, Ramesh SG. Multidimensional H-atom tunneling in the catecholate monoanion. Phys Chem Chem Phys 2022; 24:10887-10905. [PMID: 35451429 DOI: 10.1039/d1cp04590c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the catecholate monoanion as a new model system for the study of multidimensional tunneling. It has a symmetrical O-H double-well structure, and the H atom motion between the two wells is coupled to both low and high frequency modes with different strengths. With a view to studying mode-specific tunneling in the catecholate monoanion, we have developed a full (33) dimensional potential energy surface in transition state (TS) normal modes using a Distributed Gaussian Empirical Valence Bond (DGEVB) based approach. We have computed eigenstates in different subspaces using both unrelaxed and relaxed potentials based on the DGEVB model. With unrelaxed potentials, we present results up to 7D subspaces that include the imaginary frequency mode and six modes coupled to it. With relaxed potentials, we focus on the two most important coupling modes. The structures of the ground and vibrationally excited eigenstates are discussed for both approaches and mode-specific tunneling splitting and their trends are presented.
Collapse
Affiliation(s)
- Debabrata Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sai G Ramesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Nejad A, Meyer KAE, Kollipost F, Xue Z, Suhm MA. Slow monomer vibrations in formic acid dimer: Stepping up the ladder with FTIR and Raman jet spectroscopy. J Chem Phys 2021; 155:224301. [PMID: 34911308 DOI: 10.1063/5.0075272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In an effort to extend the cold gas phase spectroscopic database of the cyclic formic acid dimer (FAD), we present and analyze the jet-cooled vibrational infrared and Raman spectrum of (HCOOH)2 in the monomer fingerprint region between 600 and 1500 cm-1. The present study bridges the gap between the intermolecular dimerization-induced and the carbonyl stretching fundamentals that have already been reexamined using jet-cooled or high-resolution spectroscopy. This completes the characterization of the jet-cooled vibrational (HCOOH)2 spectrum below the complex OH (CH) stretching fundamentals, and we report resonance-induced FAD combination/overtone transitions that will serve as a valuable reference for a theoretical modeling of its vibrational dynamics. As a by-product, several new formic acid trimer fundamentals are identified in the jet spectra and assigned with the help of second-order vibrational perturbation theory (VPT2). The polar formic acid dimer still eludes detection in a supersonic jet, but we are able to estimate an experimental upper-bound of the polar dimer-to-trimer-to-cyclic dimer intensity ratio to about 1:10:100 under typical expansion conditions. Using VPT2 with resonance treatment (VPT2+K), we reinvestigate the notorious ν22 resonance triad. Generally, we find that VPT2, which is, of course, inadequate for modeling the resonance-rich OH stretching spectrum of FAD, is performing very satisfactorily in predicting fundamental and two-quantum state term values for the slower modes below 1500 cm-1. As these modes are the building blocks for the ultrafast energy dissipation in the OH stretching region, the present work opens the door for its quantitative understanding.
Collapse
Affiliation(s)
- Arman Nejad
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Katharina A E Meyer
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Franz Kollipost
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Zhifeng Xue
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Martin A Suhm
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Tikhonov DS. A simplistic computational procedure for tunneling splittings caused by proton transfer. Struct Chem 2021. [DOI: 10.1007/s11224-021-01845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractIn this manuscript, we present an approach for computing tunneling splittings for large amplitude motions. The core of the approach is a solution of an effective one-dimensional Schrödinger equation with an effective mass and an effective potential energy surface composed of electronic and harmonic zero-point vibrational energies of small amplitude motions in the molecule. The method has been shown to work in cases of three model motions: nitrogen inversion in ammonia, single proton transfer in malonaldehyde, and double proton transfer in the formic acid dimer. In the current work, we also investigate the performance of different DFT and post-Hartree–Fock methods for prediction of the proton transfer tunneling splittings, quality of the effective Schrödinger equation parameters upon the isotopic substitution, and possibility of a complete basis set (CBS) extrapolation for the resulting tunneling splittings.
Collapse
|
6
|
Martín Santa Daría A, Avila G, Mátyus E. Fingerprint region of the formic acid dimer: variational vibrational computations in curvilinear coordinates. Phys Chem Chem Phys 2021; 23:6526-6535. [PMID: 33690754 DOI: 10.1039/d0cp06289h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curvilinear kinetic energy models are developed for variational nuclear motion computations including the inter- and the low-frequency intra-molecular degrees of freedom of the formic acid dimer. The coupling of the inter- and intra-molecular modes is studied by solving the vibrational Schrödinger equation for a series of vibrational models, from two up to ten active vibrational degrees of freedom by selecting various combinations of active modes and constrained coordinate values. Vibrational states, nodal assignment, and infrared vibrational intensity information is computed using the full-dimensional potential energy surface (PES) and electric dipole moment surface developed by Qu and Bowman [Phys. Chem. Chem. Phys., 2016, 18, 24835; J. Chem. Phys., 2018, 148, 241713]. Good results are obtained for several fundamental and combination bands in comparison with jet-cooled vibrational spectroscopy experiments, but the description of the ν8 and ν9 fundamental vibrations, which are close in energy and have the same symmetry, appears to be problematic. For further progress in comparison with experiment, the potential energy surface, and in particular, its multi-dimensional couplings representation, requires further improvement.
Collapse
Affiliation(s)
- Alberto Martín Santa Daría
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | | | | |
Collapse
|
7
|
Liu H, Cao J, Bian W. Efficient Quantum Mechanical Calculations of Mode-Specific Tunneling Splittings upon Fundamental Excitation in the Dimer of Formic Acid. J Phys Chem A 2020; 124:6536-6543. [PMID: 32662997 DOI: 10.1021/acs.jpca.0c05471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formic acid dimer (FAD) is an important benchmark system for understanding the double hydrogen transfer process. Most recently, Zhang et al. measured a few tunneling splittings upon fundamental excitation of FAD precisely (Zhang, Y. et al. J. Chem. Phys. 2017, 146, 244306); however, relevant theoretical studies are very limited. Here, we present a multidimensional quantum dynamics study on mode-specific tunneling splittings upon fundamental excitation in FAD with an efficient theoretical scheme developed by our group in which the process-oriented basis function customization strategy is combined with the preconditioned inexact spectral transform method. Various mode-specific tunneling splittings upon fundamental excitation are systematically calculated, and interesting mode-specific excitation effects on tunneling rate are identified. In particular, the calculated tunneling splittings for the ν22 and ν21 states are in good agreement with experiment, and the remarkable mode-specific suppression effects upon excitation should result from that the antisymmetric vibrational modes hinder the concerted double H-transfer. The present work is helpful to acquire a better understanding of the mode-specific excitation effects on tunneling processes.
Collapse
Affiliation(s)
- Hao Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
8
|
Abstract
AbstractFormic acid dimer as the prototypical doubly hydrogen-bonded gas-phase species is discussed from the perspective of the three translational and the three rotational degrees of freedom which are lost when two formic acid molecules form a stable complex. The experimental characterisation of these strongly hindered translations and rotations is reviewed, as are attempts to describe the associated fundamental vibrations, their combinations, and their thermal shifts by different electronic structure calculations and vibrational models. A remarkable match is confirmed for the combination of a CCSD(T)-level harmonic treatment and an MP2-level anharmonic VPT2 correction. Qualitatively correct thermal shifts of the vibrational spectra can be obtained from classical molecular dynamics in CCSD(T)-quality force fields. A detailed analysis suggests that this agreement between experiment and composite theoretical treatment is not strongly affected by fortuitous error cancellation but fully converged variational treatments of the six pair or intermolecular modes and their overtones and combinations in this model system would be welcome.
Collapse
|
9
|
Qu C, Bowman JM. High-dimensional fitting of sparse datasets of CCSD(T) electronic energies and MP2 dipole moments, illustrated for the formic acid dimer and its complex IR spectrum. J Chem Phys 2018; 148:241713. [DOI: 10.1063/1.5017495] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chen Qu
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M. Bowman
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
10
|
Richardson JO. Full- and reduced-dimensionality instanton calculations of the tunnelling splitting in the formic acid dimer. Phys Chem Chem Phys 2017; 19:966-970. [DOI: 10.1039/c6cp07808g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nearly all degrees of freedom need to be included for accurate theoretical predictions of quantum dynamics.
Collapse
|
11
|
Fillaux F, Cousson A. A neutron diffraction study of the crystal of benzoic acid from 6 to 293 K and a macroscopic-scale quantum theory of the lattice of hydrogen-bonded dimers. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Ivanov SD, Grant IM, Marx D. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated. J Chem Phys 2016; 143:124304. [PMID: 26429008 DOI: 10.1063/1.4931052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
Collapse
Affiliation(s)
- Sergei D Ivanov
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ian M Grant
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
13
|
Qu C, Bowman JM. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1–4-mode subspaces. Phys Chem Chem Phys 2016; 18:24835-24840. [DOI: 10.1039/c6cp03073d] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer.
Collapse
Affiliation(s)
- Chen Qu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
- Emory University
- Atlanta
- USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation
- Emory University
- Atlanta
- USA
| |
Collapse
|
14
|
Jain A, Sibert EL. Tunneling splittings in formic acid dimer: An adiabatic approximation to the Herring formula. J Chem Phys 2015; 142:084115. [DOI: 10.1063/1.4908565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amber Jain
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Edwin L. Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
15
|
Kalescky R, Kraka E, Cremer D. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation. J Chem Phys 2014; 140:084315. [DOI: 10.1063/1.4866696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Kalescky R, Kraka E, Cremer D. Local vibrational modes of the formic acid dimer – the strength of the double hydrogen bond. Mol Phys 2013. [DOI: 10.1080/00268976.2013.796070] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- R. Kalescky
- a Department of Chemistry , Southern Methodist University , 3215 Daniel Avenue, Dallas , Texas , 75275 , USA
| | - E. Kraka
- a Department of Chemistry , Southern Methodist University , 3215 Daniel Avenue, Dallas , Texas , 75275 , USA
| | - D. Cremer
- a Department of Chemistry , Southern Methodist University , 3215 Daniel Avenue, Dallas , Texas , 75275 , USA
| |
Collapse
|
17
|
Flakus HT, Hachuła B. Effect of the resonance of the C-H and O-H bond stretching vibrations on the IR spectra of the hydrogen bond in formic and acetic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1276-1284. [PMID: 21620759 DOI: 10.1016/j.saa.2011.04.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
It is shown that the resonance of the O-H and C-H bond stretching vibrations is responsible for a noticeable intensity redistribution effect in the IR spectra of associated formic acid molecules in the gaseous phase. This effect is manifested by a considerably high growth in intensity of the νC-H band, which overlaps the νO-H band contour in the spectra. A vibronic coupling of the Herzberg-Teller-type expressed by the second order term in the perturbation theory is the most probable source of these spectral effects. The presented mechanism explains the variation of the effect magnitude accompanying the phase transitions. The proposed model also facilitates the understanding of the H/D isotopic effects in the spectra as well as the essential difference in the corresponding spectral properties between the formic and the acetic acid.
Collapse
Affiliation(s)
- Henryk T Flakus
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland.
| | | |
Collapse
|
18
|
Roy TK, Prasad MD. Development of a new variational approach for thermal density matrices. J Chem Phys 2011; 134:214110. [DOI: 10.1063/1.3592777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Barnes GL, Kellman ME. Communication: Effective spectroscopic Hamiltonian for multiple minima with above barrier motion: Isomerization in HO2. J Chem Phys 2010; 133:101105. [DOI: 10.1063/1.3480017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Luckhaus D. Hydrogen exchange in formic acid dimer: tunnelling above the barrier. Phys Chem Chem Phys 2010; 12:8357-61. [DOI: 10.1039/c001253j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Xue Z, Suhm MA. Probing the stiffness of the simplest double hydrogen bond: The symmetric hydrogen bond modes of jet-cooled formic acid dimer. J Chem Phys 2009; 131:054301. [DOI: 10.1063/1.3191728] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Z. Xue
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - M. A. Suhm
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
22
|
Mališ M, Matanović I, Došlić N. A Computational Study of Electronic and Spectroscopic Properties of Formic Acid Dimer Isotopologues. J Phys Chem A 2009; 113:6034-40. [DOI: 10.1021/jp901067u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. Mališ
- Department of Physical Chemistry, R. Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - I. Matanović
- Department of Physical Chemistry, R. Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - N. Došlić
- Department of Physical Chemistry, R. Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
23
|
Reduced-Dimensional Quantum Approach to Tunneling Splittings Using Saddle-Point Normal Coordinates. J Phys Chem A 2009; 113:7556-62. [DOI: 10.1021/jp901027g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|