1
|
Hino Y, Hayakawa H. Fluctuation relations for adiabatic pumping. Phys Rev E 2020; 102:012115. [PMID: 32795070 DOI: 10.1103/physreve.102.012115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
We derive an extended fluctuation relation for an open system coupled with two reservoirs under adiabatic one-cycle modulation. We confirm that the geometrical phase caused by the Berry-Sinitsyn-Nemenman curvature in the parameter space generates non-Gaussian fluctuations. This non-Gaussianity is enhanced for the instantaneous fluctuation relation when the bias between the two reservoirs disappears.
Collapse
Affiliation(s)
- Yuki Hino
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Funo K, Lambert N, Nori F, Flindt C. Shortcuts to Adiabatic Pumping in Classical Stochastic Systems. PHYSICAL REVIEW LETTERS 2020; 124:150603. [PMID: 32357046 DOI: 10.1103/physrevlett.124.150603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Adiabatic pumping is characterized by a geometric contribution to the pumped charge, which can be nonzero even in the absence of a bias. However, as the driving speed is increased, nonadiabatic excitations gradually reduce the pumped charge, thereby limiting the maximal applicable driving frequencies. To circumvent this problem, we here extend the concept of shortcuts to adiabaticity to construct a control protocol which enables geometric pumping well beyond the adiabatic regime. Our protocol allows for an increase, by more than an order of magnitude, in the driving frequencies, and the method is also robust against moderate fluctuations of the control field. We provide a geometric interpretation of the control protocol and analyze the thermodynamic cost of implementing it. Our findings can be realized using current technology and potentially enable fast pumping of charge or heat in quantum dots, as well as in other stochastic systems from physics, chemistry, and biology.
Collapse
Affiliation(s)
- Ken Funo
- Theoretical Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Neill Lambert
- Theoretical Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Franco Nori
- Theoretical Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
3
|
Takahashi K, Fujii K, Hino Y, Hayakawa H. Nonadiabatic Control of Geometric Pumping. PHYSICAL REVIEW LETTERS 2020; 124:150602. [PMID: 32357045 DOI: 10.1103/physrevlett.124.150602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
We study nonadiabatic effects of geometric pumping. With arbitrary choices of periodic control parameters, we go beyond the adiabatic approximation to obtain the exact pumping current. We find that a geometrical interpretation for the nontrivial part of the current is possible even in the nonadiabatic regime. The exact result allows us to find a smooth connection between the adiabatic Berry phase theory at low frequencies and the Floquet theory at high frequencies. We also study how to control the geometric current. Using the method of shortcuts to adiabaticity with the aid of an assisting field, we illustrate that it enhances the current.
Collapse
Affiliation(s)
- Kazutaka Takahashi
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Keisuke Fujii
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan and iTHEMS Program, RIKEN, Saitama 351-0198, Japan
| | - Yuki Hino
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Watanabe KL, Hayakawa H. Geometric fluctuation theorem for a spin-boson system. Phys Rev E 2017; 96:022118. [PMID: 28950528 DOI: 10.1103/physreve.96.022118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 06/07/2023]
Abstract
We derive an extended fluctuation theorem for geometric pumping of a spin-boson system under periodic control of environmental temperatures by using a Markovian quantum master equation. We obtain the current distribution, the average current, and the fluctuation in terms of the Monte Carlo simulation. To explain the results of our simulation we derive an extended fluctuation theorem. This fluctuation theorem leads to the fluctuation dissipation relations but the absence of the conventional reciprocal relation.
Collapse
Affiliation(s)
- Kota L Watanabe
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Sughiyama Y, Kobayashi TJ. Steady-state thermodynamics for population growth in fluctuating environments. Phys Rev E 2017; 95:012131. [PMID: 28208406 DOI: 10.1103/physreve.95.012131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/07/2022]
Abstract
We report that population dynamics in fluctuating environments is characterized by a mathematically equivalent structure to steady-state thermodynamics. By employing the structure, population growth in fluctuating environments is decomposed into housekeeping and excess parts. The housekeeping part represents the integral of the stationary growth rate for each condition during a history of the environmental change. The excess part accounts for the excess growth induced by environmental fluctuations. Focusing on the excess growth, we obtain a Clausius inequality, which gives the upper bound of the excess growth. The equality is shown to be achieved in quasistatic environmental changes. We also clarify that this bound can be evaluated by the "lineage fitness", which is an experimentally observable quantity.
Collapse
Affiliation(s)
- Yuki Sughiyama
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
Yabunaka S, Hayakawa H. Geometric pumping induced by shear flow in dilute liquid crystalline polymer solutions. J Chem Phys 2015; 142:054903. [DOI: 10.1063/1.4906557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shunsuke Yabunaka
- Yukawa Institute for Theoretical Physics, The Kyoto University, Kitashirakawa Oiwake-Cho, 606-8502 Kyoto, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, The Kyoto University, Kitashirakawa Oiwake-Cho, 606-8502 Kyoto, Japan
| |
Collapse
|
7
|
Nakagawa N. Universal expression for adiabatic pumping in terms of nonequilibrium steady states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022108. [PMID: 25215690 DOI: 10.1103/physreve.90.022108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 06/03/2023]
Abstract
We develop a unified treatment of pumping and nonequilibrium thermodynamics. We show that the pumping current generated through an adiabatic mechanical operation in equilibrium can be expressed in terms of the stationary distribution of the corresponding driven nonequilibrium system. We also show that the total transfer in pumping can be evaluated from the work imported to the driven counterpart. These findings lead us to a unified viewpoint for pumping and nonequilibrium thermodynamics.
Collapse
Affiliation(s)
- Naoko Nakagawa
- College of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
8
|
Kanazawa K, Sagawa T, Hayakawa H. Energy pumping in electrical circuits under avalanche noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012115. [PMID: 25122259 DOI: 10.1103/physreve.90.012115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 06/03/2023]
Abstract
We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.
Collapse
Affiliation(s)
- Kiyoshi Kanazawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Sagawa
- Department of Basic Science, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Chernyak VY, Klein JR, Sinitsyn NA. Quantization and fractional quantization of currents in periodically driven stochastic systems. II. Full counting statistics. J Chem Phys 2012; 136:154108. [DOI: 10.1063/1.3703329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Sagawa T, Hayakawa H. Geometrical expression of excess entropy production. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051110. [PMID: 22181372 DOI: 10.1103/physreve.84.051110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/24/2011] [Indexed: 05/31/2023]
Abstract
We derive a geometrical expression of the excess entropy production for quasistatic transitions between nonequilibrium steady states of Markovian jump processes, which can be exactly applied to nonlinear and nonequilibrium situations. The obtained expression is geometrical; the excess entropy production depends only on a trajectory in the parameter space, analogous to the Berry phase in quantum mechanics. Our results imply that vector potentials are needed to construct the thermodynamics of nonequilibrium steady states.
Collapse
Affiliation(s)
- Takahiro Sagawa
- The Hakubi Center, The Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
11
|
Astumian RD. Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules. Annu Rev Biophys 2011; 40:289-313. [DOI: 10.1146/annurev-biophys-042910-155355] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Ohkubo J. Variational principle of counting statistics in master equations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:012101. [PMID: 19658749 DOI: 10.1103/physreve.80.012101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Indexed: 05/28/2023]
Abstract
We study counting statistics of number of transitions in a stochastic process. For mesoscopic systems, a path integral formulation for the counting statistics has already been derived. We here show that it is also possible to derive the similar path integral formulation without the assumption of mesoscopic systems. It has been clarified that the saddle point method for the path integral is not an approximation, but a valid procedure in the present derivation. Hence, a variational principle in the counting statistics is naturally derived. In order to obtain the variational principle, we employ many independent replicas of the same system. In addition, the Euler-Maclaurin formula is used in order to connect the discrete and continuous properties of the system.
Collapse
Affiliation(s)
- Jun Ohkubo
- Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8581, Japan.
| |
Collapse
|
13
|
|