1
|
Cheng L. Relativistic exact two-component coupled-cluster calculations of electronic g-factors for heavy-atom-containing molecules pertinent to search of new physics. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Gillhuber S, Franzke YJ, Weigend F. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds. J Phys Chem A 2021; 125:9707-9723. [PMID: 34723533 DOI: 10.1021/acs.jpca.1c07793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an efficient implementation of paramagnetic NMR shielding tensors and shifts in a nonrelativistic and scalar-relativistic density functional theory framework. For the latter, we make use of the scalar exact two-component Hamiltonian in its local approximation, and generally we apply the well established (multipole-accelerated) resolution of the identity approximation and the seminumerical exchange approximation. The perturbed density matrix of a paramagnetic NMR shielding calculation is further used to study the magnetically induced current density and ring currents of open-shell systems as illustrated for [U@Bi12]3-. [U@Bi12]3- features delocalized highest occupied molecular orbitals and sustains a net diatropic ring current of ca. 18 nA/T through the Bi12 torus similar to the all-metal aromatic heavy-element cluster [Th@Bi12]4-.
Collapse
Affiliation(s)
- Sebastian Gillhuber
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
3
|
Franzke YJ, Mack F, Weigend F. NMR Indirect Spin-Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. J Chem Theory Comput 2021; 17:3974-3994. [PMID: 34151571 DOI: 10.1021/acs.jctc.1c00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A quasi-relativistic implementation of NMR indirect spin-spin coupling constants is presented. The exact two-component (X2C) Hamiltonian and its diagonal local approximation to the unitary decoupling transformation (DLU) are utilized together with the (modified) screened nuclear spin-orbit approach. In a restricted kinetic balance, the finite nucleus model is available for both the scalar and vector potentials. The implementation supports density functionals up to the fourth rung of Jacob's ladder, i.e., (range-separated) hybrid and local hybrid functionals based on a seminumerical ansatz. We assess the quality of our quasi-relativistic X2C approach by comparison with "fully" relativistic four-component results for small main-group molecules and alkynyl compounds. The mean absolute error introduced by the DLU scheme is less than 0.05 × 1019 T J-2 of the reduced coupling constant for the small main-group molecules and 0.5 Hz for the alkynyl compounds. Thus, the error is significantly smaller than finite nucleus size effects for heavy elements. The basis set convergence and the impact of different density functional approximations are further studied. We propose a simple scheme to develop segmented-contracted relativistic all-electron basis sets for NMR spin-spin couplings. Our implementation allows us to perform calculations of extended molecules with reasonable computational effort, which is illustrated for the 1J(119Sn, 31P) coupling constant of a low-valent tin phosphinidenide complex. The corresponding results are in good agreement with the experimental findings.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
4
|
Rusakova IL, Rusakov YY. Quantum chemical calculations of 77 Se and 125 Te nuclear magnetic resonance spectral parameters and their structural applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:359-407. [PMID: 33095923 DOI: 10.1002/mrc.5111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
An accurate quantum chemical (QC) modeling of 77 Se and 125 Te nuclear magnetic resonance (NMR) spectra is deeply involved in the NMR structural assignment for selenium and tellurium compounds that are of utmost importance both in organic and inorganic chemistry nowadays due to their huge application potential in many fields, like biology, medicine, and metallurgy. The main interest of this review is focused on the progress in QC computations of 77 Se and 125 Te NMR chemical shifts and indirect spin-spin coupling constants involving these nuclei. Different computational methodologies that have been used to simulate the NMR spectra of selenium and tellurium compounds since the middle of the 1990s are discussed with a strong emphasis on their accuracy. A special accent is placed on the calculations resorting to the relativistic methodologies, because taking into account the relativistic effects appreciably influences the precision of NMR calculations of selenium and, especially, tellurium compounds. Stereochemical applications of quantum chemical calculations of 77 Se and 125 Te NMR parameters are discussed so as to exemplify the importance of integrated approach of experimental and computational NMR techniques.
Collapse
Affiliation(s)
- Irina L Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Yuriy Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
5
|
Rusakov YY, Rusakova IL. What Most Affects the Accuracy of 125Te NMR Chemical Shift Calculations. J Phys Chem A 2020; 124:6714-6725. [DOI: 10.1021/acs.jpca.0c05780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu. Yu. Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - I. L. Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| |
Collapse
|
6
|
Sun Q, Zhang X, Banerjee S, Bao P, Barbry M, Blunt NS, Bogdanov NA, Booth GH, Chen J, Cui ZH, Eriksen JJ, Gao Y, Guo S, Hermann J, Hermes MR, Koh K, Koval P, Lehtola S, Li Z, Liu J, Mardirossian N, McClain JD, Motta M, Mussard B, Pham HQ, Pulkin A, Purwanto W, Robinson PJ, Ronca E, Sayfutyarova ER, Scheurer M, Schurkus HF, Smith JET, Sun C, Sun SN, Upadhyay S, Wagner LK, Wang X, White A, Whitfield JD, Williamson MJ, Wouters S, Yang J, Yu JM, Zhu T, Berkelbach TC, Sharma S, Sokolov AY, Chan GKL. Recent developments in the PySCF program package. J Chem Phys 2020; 153:024109. [DOI: 10.1063/5.0006074] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qiming Sun
- AxiomQuant Investment Management LLC, Shanghai 200120, China
| | - Xing Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Peng Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Marc Barbry
- Simbeyond B.V., P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
| | - Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nikolay A. Bogdanov
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Jia Chen
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Janus J. Eriksen
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Yang Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Sheng Guo
- Google Inc., Mountain View, California 94043, USA
| | - Jan Hermann
- FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
- TU Berlin, Machine Learning Group, Marchstr. 23, 10587 Berlin, Germany
| | - Matthew R. Hermes
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Kevin Koh
- Department of Chemistry and Biochemistry, The University of Notre Dame du Lac, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA
| | - Peter Koval
- Simune Atomistics S.L., Avenida Tolosa 76, Donostia-San Sebastian, Spain
| | - Susi Lehtola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki, Finland
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Narbe Mardirossian
- AMGEN Research, One Amgen Center Drive, Thousand Oaks, California 91320, USA
| | | | - Mario Motta
- IBM Almaden Research Center, San Jose, California 95120, USA
| | - Bastien Mussard
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Hung Q. Pham
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Artem Pulkin
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, The Netherlands
| | - Wirawan Purwanto
- Information Technology Services, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Paul J. Robinson
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Enrico Ronca
- Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR), Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Elvira R. Sayfutyarova
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University of Heidelberg, 205 Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Henry F. Schurkus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - James E. T. Smith
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shi-Ning Sun
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Shiv Upadhyay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Lucas K. Wagner
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Xiao Wang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Alec White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - James Daniel Whitfield
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Mark J. Williamson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jason M. Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Timothy C. Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Zhang Y, Suo B, Wang Z, Zhang N, Li Z, Lei Y, Zou W, Gao J, Peng D, Pu Z, Xiao Y, Sun Q, Wang F, Ma Y, Wang X, Guo Y, Liu W. BDF: A relativistic electronic structure program package. J Chem Phys 2020; 152:064113. [DOI: 10.1063/1.5143173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong Zhang
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
| | - Zikuan Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
| | - Wenli Zou
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Daoling Peng
- College of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Zhichen Pu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Qiming Sun
- Tencent America LLC, Palo Alto, California 94306, USA
| | - Fan Wang
- Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Yongtao Ma
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Xiaopeng Wang
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| |
Collapse
|
8
|
Franzke YJ, Weigend F. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory. J Chem Theory Comput 2019; 15:1028-1043. [DOI: 10.1021/acs.jctc.8b01084] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannick J. Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Abstract
The foundations, formalisms, technicalities, and practicalities of relativistic time-dependent density functional theories (R-TD-DFT) for spinor excited states of molecular systems containing heavy elements are critically reviewed.
Collapse
Affiliation(s)
- Wenjian Liu
- Beijing National Center for Molecular Sciences
- Institute of Theoretical and Computational Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yunlong Xiao
- Beijing National Center for Molecular Sciences
- Institute of Theoretical and Computational Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
10
|
Relativistic effects in the NMR spectra of compounds containing heavy chalcogens. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Uhlíková T, Urban Š. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1416194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tereza Uhlíková
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Štěpán Urban
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
12
|
Sun Q, Berkelbach TC, Blunt NS, Booth GH, Guo S, Li Z, Liu J, McClain JD, Sayfutyarova ER, Sharma S, Wouters S, Chan GK. P
y
SCF: the Python‐based simulations of chemistry framework. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1340] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qiming Sun
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA USA
| | - Timothy C. Berkelbach
- Department of Chemistry and James Franck InstituteUniversity of Chicago Chicago IL USA
| | - Nick S. Blunt
- Chemical Science DivisionLawrence Berkeley National Laboratory Berkeley CA USA
- Department of ChemistryUniversity of California Berkeley CA USA
| | - George H. Booth
- Department of PhysicsKing's College London, Strand London UK
| | - Sheng Guo
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA USA
- Department of ChemistryPrinceton University Princeton NJ USA
| | - Zhendong Li
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA USA
| | - Junzi Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - James D. McClain
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA USA
- Department of ChemistryPrinceton University Princeton NJ USA
| | - Elvira R. Sayfutyarova
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA USA
- Department of ChemistryPrinceton University Princeton NJ USA
| | - Sandeep Sharma
- Department of Chemistry and BiochemistryUniversity of Colorado Boulder Boulder CO USA
| | | | - Garnet Kin‐Lic Chan
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA USA
| |
Collapse
|
13
|
Rouf SA, Mareš J, Vaara J. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Syed Awais Rouf
- NMR Research Unit, University of Oulu, P.O.
Box 3000, Oulu FIN-90014, Finland
| | - Jiří Mareš
- NMR Research Unit, University of Oulu, P.O.
Box 3000, Oulu FIN-90014, Finland
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O.
Box 3000, Oulu FIN-90014, Finland
| |
Collapse
|
14
|
Repisky M, Komorovsky S, Bast R, Ruud K. Relativistic Calculations of Nuclear Magnetic Resonance Parameters. GAS PHASE NMR 2016. [DOI: 10.1039/9781782623816-00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Relativistic effects are important for the accurate evaluation of the observables of nuclear magnetic resonance (NMR) spectroscopy, the nuclear magnetic shielding and the indirect spin–spin coupling tensors. Some of the most notable relativistic effects, in particular for light elements in the vicinity of heavy nuclei, are due to spin–orbit effects, an effect difficult to evaluate when starting from a non-relativistic wavefunction. Two- and four-component relativistic methods include spin–orbit effects variationally, and the recent improvements in the computational efficiency of these methods open new opportunities for accurate calculations of NMR parameters also for molecules with heavy elements. We here present an overview of the different approximations that have been introduced for calculating relativistic effects with two- and four-component methods and how these methods can be used to calculate the NMR parameters. We will also give some examples of systems that have been studied computationally with two- and four-component relativistic methods and discuss the importance of relativistic effects on the shielding and indirect spin–spin coupling constants.
Collapse
Affiliation(s)
- Michal Repisky
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry UiT The Arctic University of Norway N-9037 Tromsø Norway
| | - Stanislav Komorovsky
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry UiT The Arctic University of Norway N-9037 Tromsø Norway
| | - Radovan Bast
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry UiT The Arctic University of Norway N-9037 Tromsø Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry UiT The Arctic University of Norway N-9037 Tromsø Norway
| |
Collapse
|
15
|
Zhao R, Zhang Y, Xiao Y, Liu W. Exact two-component relativistic energy band theory and application. J Chem Phys 2016; 144:044105. [DOI: 10.1063/1.4940140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rundong Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yong Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Wenjian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
16
|
Abstract
Abstract
Any quantum mechanical calculation on electronic structure ought to choose first an appropriate Hamiltonian H and then an Ansatz for parameterizing the wave function Ψ, from which the desired energy/property E(λ) can finally be calculated. Therefore, the very first question is: what is the most accurate many-electron Hamiltonian H? It is shown that such a Hamiltonian i.e. effective quantum electrodynamics (eQED) Hamiltonian, can be obtained naturally by incorporating properly the charge conjugation symmetry when normal ordering the second quantized fermion operators. Taking this eQED Hamiltonian as the basis, various approximate relativistic many-electron Hamiltonians can be obtained based entirely on physical arguments. All these Hamiltonians together form a complete and continuous ‘Hamiltonian ladder’, from which one can pick up the right one according to the target physics and accuracy. As for the many-electron wave function Ψ, the most intriguing questions are as follows. (i) How to do relativistic explicit correlation? (ii) How to handle strong correlation? Both general principles and practical strategies are outlined here to handle these issues. Among the electronic properties E(λ) that sample the electronic wave function nearby the nuclear region, nuclear magnetic resonance (NMR) shielding and nuclear spin-rotation (NSR) coupling constant are especially challenging: they require body-fixed molecular Hamiltonians that treat both the electrons and nuclei as relativistic quantum particles. Nevertheless, they have been formulated rigorously. In particular, a very robust ‘relativistic mapping’ between the two properties has been established, which can translate experimentally measured NSR coupling constants to very accurate absolute NMR shielding scales that otherwise cannot be obtained experimentally. Since the most general and fundamental issues pertinent to all the three components of the quantum mechanical equation HΨ = EΨ (i.e. Hamiltonian H, wave function Ψ, and energy/property E(λ)) have fully been understood, the big picture of relativistic molecular quantum mechanics can now be regarded as established.
Collapse
Affiliation(s)
- Wenjian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Yoshizawa T, Hada M. Gauge-origin dependence of NMR shielding constants in the Douglas–Kroll–Hess method. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Xiao Y, Zhang Y, Liu W. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals. J Chem Phys 2014; 141:164110. [DOI: 10.1063/1.4898631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yong Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenjian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
19
|
Xiao Y, Zhang Y, Liu W. New Experimental NMR Shielding Scales Mapped Relativistically from NSR: Theory and Application. J Chem Theory Comput 2014; 10:600-8. [PMID: 26580036 DOI: 10.1021/ct400950g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recently proposed relativistic mapping between nuclear magnetic resonance (NMR) shielding and nuclear spin-rotation (NSR) coupling tensors [J. Chem. Phys. 2013, 138, 134104] is employed to establish new experimental (more precisely, experimentally derived) absolute shielding constants for H and X in HX (X = F, Cl, Br, and I). The results are much more accurate than the old "experimental" values that were based on the well-known nonrelativistic mapping. The relativistic mapping is very robust in the sense that it is rather insensitive to the quality of one-particle basis sets and the treatment of electron correlation. Relativistic effects in the NSR coupling constants are also elucidated in depth.
Collapse
Affiliation(s)
- Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Yong Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Wenjian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
20
|
Wodyński A, Pecul M. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives. J Chem Phys 2014; 140:024319. [DOI: 10.1063/1.4858466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Cheng L, Gauss J, Stanton JF. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. J Chem Phys 2013; 139:054105. [DOI: 10.1063/1.4816130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
22
|
Affiliation(s)
- Michał Jaszuński
- a Institute of Organic Chemistry , Polish Academy of Sciences , Warszawa , 01-224 , Kasprzaka 44, Poland
| | - Małgorzata Olejniczak
- b Faculty of Chemistry , University of Warsaw , Pasteura 1, Laboratoire de Chimie et Physique Quantiques (UMR 5626), CNRS and Université de Toulouse 3 (Paul Sabatier), 118 Route de Narbonne, F-31062 Toulouse, France, Warsaw , 02-093 , Poland
| |
Collapse
|
23
|
Yoshizawa T, Sakaki S. NMR shielding constants of CuX, AgX, and AuX (X = F, Cl, Br, and I) investigated by density functional theory based on the Douglas-Kroll-Hess Hamiltonian. J Comput Chem 2013; 34:1013-23. [DOI: 10.1002/jcc.23224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/11/2022]
|
24
|
Sun Q, Xiao Y, Liu W. Exact two-component relativistic theory for NMR parameters: General formulation and pilot application. J Chem Phys 2012; 137:174105. [DOI: 10.1063/1.4764042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
25
|
Abstract
This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts.
Collapse
Affiliation(s)
- Jochen Autschbach
- Department of Chemistry, State University of New York at Buffalo, New York 14260-3000, USA.
| |
Collapse
|
26
|
NMR espectroscopic parameters of HX and Si(Sn)X4 (X=H, F, Cl, Br and I) and SnBr4−nIn model compounds. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
|
28
|
Olejniczak M, Bast R, Saue T, Pecul M. A simple scheme for magnetic balance in four-component relativistic Kohn–Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis. J Chem Phys 2012; 136:014108. [DOI: 10.1063/1.3671390] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Liu W. Perspectives of relativistic quantum chemistry: the negative energy cat smiles. Phys Chem Chem Phys 2011; 14:35-48. [PMID: 22080186 DOI: 10.1039/c1cp21718f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given the remarkable advances in relativistic quantum chemistry, some conceptual aspects still remain to be addressed. Among others, the role of negative energy states (NES) in electron correlation and other properties requires most attention. Based on critical assessments of the configuration space (CS), no-photon (and no-time) Fock space (FS) and quantum electrodynamics (QED) approaches, it is concluded that only QED provides the correct prescription for the contributions of NES to correlation, while both CS and FS give rise to wrong results. This essentially means that one should work either with the no-pair approximation (which has an intrinsic error of order (Zα)(3)) or with QED. Whether a consistent relativistic many-electron theory does exist in between remains an open question. Even under the no-pair approximation, there still exists an issue arising from that the no-pair Hamiltonian is incompatible with explicitly correlated methods. It turns out that this can nicely be resolved by introducing the concept of extended no-pair projection. Apart from these take-home messages, other immediate prospects of relativistic quantum chemistry are also highlighted for guiding future developments and applications.
Collapse
Affiliation(s)
- Wenjian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
30
|
Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 2011. [DOI: 10.1007/s00214-010-0876-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Sulzer D, Olejniczak M, Bast R, Saue T. 4-Component relativistic magnetically induced current density using London atomic orbitals. Phys Chem Chem Phys 2011; 13:20682-9. [DOI: 10.1039/c1cp22457c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Hamaya S, Fukui H. Dirac–Hartree–Fock Perturbation Calculation of Magnetic Shielding Using the External Field-Dependent Restricted Magnetic Balance Condition. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Affiliation(s)
- Wenjian Liu
- a Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering , Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
34
|
Cheng L, Xiao Y, Liu W. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals. J Chem Phys 2010; 131:244113. [PMID: 20059060 DOI: 10.1063/1.3283036] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.
Collapse
Affiliation(s)
- Lan Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
35
|
Aucar GA, Romero RH, Maldonado AF. Polarization propagators: A powerful theoretical tool for a deeper understanding of NMR spectroscopic parameters. INT REV PHYS CHEM 2010. [DOI: 10.1080/01442350903432865] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Iliaš M, Saue T, Enevoldsen T, Jensen HJA. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory. J Chem Phys 2009; 131:124119. [DOI: 10.1063/1.3240198] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
37
|
Sun Q, Liu W, Xiao Y, Cheng L. Exact two-component relativistic theory for nuclear magnetic resonance parameters. J Chem Phys 2009; 131:081101. [DOI: 10.1063/1.3216471] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
38
|
Kutzelnigg W, Liu W. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation. J Chem Phys 2009; 131:044129. [DOI: 10.1063/1.3185400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|