Thomas BJ, Harruff-Miller BA, Bunker CE, Lewis WK. Infrared spectroscopy of Mg-CO2 and Al-CO2 complexes in helium nanodroplets.
J Chem Phys 2015;
142:174310. [PMID:
25956103 PMCID:
PMC6910599 DOI:
10.1063/1.4919693]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 11/15/2022] Open
Abstract
The catalytic reduction of CO2 to produce hydrocarbon fuels is a topic that has gained significant attention. Development of efficient catalysts is a key enabler to such approaches, and metal-based catalysts have shown promise towards this goal. The development of a fundamental understanding of the interactions between CO2 molecules and metal atoms is expected to offer insight into the chemistry that occurs at the active site of such catalysts. In the current study, we utilize helium droplet methods to assemble complexes composed of a CO2 molecule and a Mg or Al atom. High-resolution infrared (IR) spectroscopy and optically selected mass spectrometry are used to probe the structure and binding of the complexes, and the experimental observations are compared with theoretical results determined from ab initio calculations. In both the Mg-CO2 and Al-CO2 systems, two IR bands are obtained: one assigned to a linear isomer and the other assigned to a T-shaped isomer. In the case of the Mg-CO2 complexes, the vibrational frequencies and rotational constants associated with the two isomers are in good agreement with theoretical values. In the case of the Al-CO2 complexes, the vibrational frequencies agree with theoretical predictions; however, the bands from both structural isomers exhibit significant homogeneous broadening sufficient to completely obscure the rotational structure of the bands. The broadening is consistent with an upper state lifetime of 2.7 ps for the linear isomer and 1.8 ps for the T-shaped isomer. The short lifetime is tentatively attributed to a prompt photo-induced chemical reaction between the CO2 molecule and the Al atom comprising the complex.
Collapse