1
|
García-Morales A, Balleza D. Non-canonical helical transitions and conformational switching are associated with characteristic flexibility and disorder indices in TRP and Kv channels. Channels (Austin) 2023; 17:2212349. [PMID: 37196183 DOI: 10.1080/19336950.2023.2212349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Structural evidence and much experimental data have demonstrated the presence of non-canonical helical substructures (π and 310) in regions of great functional relevance both in TRP as in Kv channels. Through an exhaustive compositional analysis of the sequences underlying these substructures, we find that each of them is associated with characteristic local flexibility profiles, which in turn are implicated in significant conformational rearrangements and interactions with specific ligands. We found that α-to-π helical transitions are associated with patterns of local rigidity whereas α-to-310 transitions are mainly leagued with high local flexibility profiles. We also study the relationship between flexibility and protein disorder in the transmembrane domain of these proteins. By contrasting these two parameters, we located regions showing a sort of structural discrepancy between these similar but not identical protein attributes. Notably, these regions are presumably implicated in important conformational rearrangements during the gating in those channels. In that sense, finding these regions where flexibility and disorder are not proportional allows us to detect regions with potential functional dynamism. From this point of view, we highlighted some conformational rearrangements that occur during ligand binding events, the compaction, and refolding of the outer pore loops in several TRP channels, as well as the well-known S4 motion in Kv channels.
Collapse
Affiliation(s)
| | - Daniel Balleza
- Unidad de Investigación y desarrollo en Alimentos, Instituto Tecnológico de Veracruz. Tecnológico Nacional de México, Veracruz, MEXICO
| |
Collapse
|
2
|
Szanto TG, Papp F, Zakany F, Varga Z, Deutsch C, Panyi G. Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels. J Gen Physiol 2023; 155:e202313352. [PMID: 37212728 PMCID: PMC10202832 DOI: 10.1085/jgp.202313352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Voltage-gated K+ channels have distinct gates that regulate ion flux: the activation gate (A-gate) formed by the bundle crossing of the S6 transmembrane helices and the slow inactivation gate in the selectivity filter. These two gates are bidirectionally coupled. If coupling involves the rearrangement of the S6 transmembrane segment, then we predict state-dependent changes in the accessibility of S6 residues from the water-filled cavity of the channel with gating. To test this, we engineered cysteines, one at a time, at S6 positions A471, L472, and P473 in a T449A Shaker-IR background and determined the accessibility of these cysteines to cysteine-modifying reagents MTSET and MTSEA applied to the cytosolic surface of inside-out patches. We found that neither reagent modified either of the cysteines in the closed or the open state of the channels. On the contrary, A471C and P473C, but not L472C, were modified by MTSEA, but not by MTSET, if applied to inactivated channels with open A-gate (OI state). Our results, combined with earlier studies reporting reduced accessibility of residues I470C and V474C in the inactivated state, strongly suggest that the coupling between the A-gate and the slow inactivation gate is mediated by rearrangements in the S6 segment. The S6 rearrangements are consistent with a rigid rod-like rotation of S6 around its longitudinal axis upon inactivation. S6 rotation and changes in its environment are concomitant events in slow inactivation of Shaker KV channels.
Collapse
Affiliation(s)
- Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Li L, Liu Z, Yang H, Li Y, Zeng Q, Chen L, Liu Y, Chen Y, Zhu F, Cao D, Hu J, Shen X. Investigation of novel de novo KCNC2 variants causing severe developmental and early-onset epileptic encephalopathy. Seizure 2022; 101:218-224. [PMID: 36087422 DOI: 10.1016/j.seizure.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022] Open
Abstract
Purpose The voltage-gated potassium channel Kv3.2, encoded by KCNC2, facilitates fast-spiking GABAergic interneurons to fire action potentials at high frequencies. It is pivotal to maintaining excitation/inhibition balance in mammalian brains. This study identified two novel de novo KCNC2 variants, p.Pro470Ser (P470S) and p.Phe382Leu (F382L), in patients with early onset developmental and epileptic encephalopathy (DEE). Methods To examine the molecular basis of DEE, we studied the functional characteristics of variant channels using patch-clamp techniques and computational modeling. Results Whole-cell patch clamp recordings from infected HEK293 cells revealed that channel activation and deactivation kinetics strongly decreased in both Kv3.2 P470S and F382L variant channels. This decrease also occurred in Kv3.2 p.Val471Leu (V471L) channels, known to be associated with DEE. In addition, Kv3.2 F382L and V471L variants exhibited a significant increase in channel conductance and a ∼20 mV negative shift in the threshold for voltage-dependent activation. Simulations of model GABAergic interneurons revealed that all variants decreased neuronal firing frequency. Thus, the variants' net loss-of-function effects disinhibited neural networks. Conclusion Our findings provide compelling evidence supporting the role of KCNC2 as a disease-causing gene in human neurodevelopmental delay and epilepsy.
Collapse
Affiliation(s)
- Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zili Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Haiyang Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, CAS, Beijing 100101, China
| | - Qi Zeng
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yidi Liu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yan Chen
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Fengjun Zhu
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Dezhi Cao
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China; Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Jun Hu
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Xuefeng Shen
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Chi G, Liang Q, Sridhar A, Cowgill JB, Sader K, Radjainia M, Qian P, Castro-Hartmann P, Venkaya S, Singh NK, McKinley G, Fernandez-Cid A, Mukhopadhyay SMM, Burgess-Brown NA, Delemotte L, Covarrubias M, Dürr KL. Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain. Nat Commun 2022; 13:4087. [PMID: 35840580 PMCID: PMC9287412 DOI: 10.1038/s41467-022-29594-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.
Collapse
Affiliation(s)
- Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, UK
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH, Solna, Sweden
| | - John B Cowgill
- Department of Applied Physics, Science for Life Laboratory, KTH, Solna, Sweden
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Mazdak Radjainia
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Shayla Venkaya
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exscientia Ltd., The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Nanki Kaur Singh
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Gavin McKinley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Alejandra Fernandez-Cid
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exact Sciences Ltd., The Sherard Building, Edmund Halley Road, The Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Shubhashish M M Mukhopadhyay
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exscientia Ltd., The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exact Sciences Ltd., The Sherard Building, Edmund Halley Road, The Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH, Solna, Sweden
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
- OMass Therapeutics, Ltd., The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK.
| |
Collapse
|
5
|
Law EC, Wilman HR, Kelm S, Shi J, Deane CM. Examining the Conservation of Kinks in Alpha Helices. PLoS One 2016; 11:e0157553. [PMID: 27314675 PMCID: PMC4912094 DOI: 10.1371/journal.pone.0157553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 01/09/2023] Open
Abstract
Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures.
Collapse
Affiliation(s)
- Eleanor C. Law
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Henry R. Wilman
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Sebastian Kelm
- Department of Informatics, UCB Pharma, Slough, United Kingdom
| | - Jiye Shi
- Department of Informatics, UCB Pharma, Slough, United Kingdom
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc Natl Acad Sci U S A 2015; 112:E1669-77. [PMID: 25775566 DOI: 10.1073/pnas.1419795112] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current mechanisms of arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia (CPVT) require spontaneous Ca(2+) release via cardiac ryanodine receptor (RyR2) channels affected by gain-of-function mutations. Hence, hyperactive RyR2 channels eager to release Ca(2+) on their own appear as essential components of this arrhythmogenic scheme. This mechanism, therefore, appears inadequate to explain lethal arrhythmias in patients harboring RyR2 channels destabilized by loss-of-function mutations. We aimed to elucidate arrhythmia mechanisms in a RyR2-linked CPVT mutation (RyR2-A4860G) that depresses channel activity. Recombinant RyR2-A4860G protein was expressed equally as wild type (WT) RyR2, but channel activity was dramatically inhibited, as inferred by [(3)H]ryanodine binding and single channel recordings. Mice heterozygous for the RyR2-A4860G mutation (RyR2-A4860G(+/-)) exhibited basal bradycardia but no cardiac structural alterations; in contrast, no homozygotes were detected at birth, suggesting a lethal phenotype. Sympathetic stimulation elicited malignant arrhythmias in RyR2-A4860G(+/-) hearts, recapitulating the phenotype originally described in a human patient with the same mutation. In isoproterenol-stimulated ventricular myocytes, the RyR2-A4860G mutation decreased the peak of Ca(2+) release during systole, gradually overloading the sarcoplasmic reticulum with Ca(2+). The resultant Ca(2+) overload then randomly caused bursts of prolonged Ca(2+) release, activating electrogenic Na(+)-Ca(2+) exchanger activity and triggering early afterdepolarizations. The RyR2-A4860G mutation reveals novel pathways by which RyR2 channels engage sarcolemmal currents to produce life-threatening arrhythmias.
Collapse
|
7
|
Fowler PW, Sansom MSP. The pore of voltage-gated potassium ion channels is strained when closed. Nat Commun 2013; 4:1872. [PMID: 23695666 PMCID: PMC3674235 DOI: 10.1038/ncomms2858] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/10/2013] [Indexed: 12/22/2022] Open
Abstract
Voltage-gated potassium channels form potassium-selective pores in cell membranes. They open or close in response to changes in the transmembrane potential and are essential for generating action potentials, and thus for the functioning of heart and brain. While a mechanism for how these channels close has been proposed, it is not clear what drives their opening. Here we use free energy molecular dynamics simulations to show that work must be done on the pore to reduce the kink in the pore-lining (S6) α-helices, thereby forming the helix bundle crossing and closing the channel. Strain is built up as the pore closes, which subsequently drives opening. We also determine the effect of mutating the PVPV motif that causes the kink in the S6 helix. Finally, an approximate upper limit on how far the S4 helix is displaced as the pore closes is estimated. Voltage-gated potassium channels open and close in response to changes in transmembrane potential, but their opening mechanism is poorly understood. Here, free energy molecular dynamics simulations show that strain accumulates as the pore closes, which subsequently drives opening.
Collapse
Affiliation(s)
- Philip W Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
8
|
Labro AJ, Snyders DJ. Being flexible: the voltage-controllable activation gate of kv channels. Front Pharmacol 2012; 3:168. [PMID: 22993508 PMCID: PMC3440756 DOI: 10.3389/fphar.2012.00168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/26/2012] [Indexed: 12/16/2022] Open
Abstract
Kv channels form voltage-dependent potassium selective pores in the outer cell membrane and are composed out of four α-subunits, each having six membrane-spanning α-helices (S1–S6). The α-subunits tetramerize such that the S5–S6 pore domains co-assemble into a centrally located K+ pore which is surrounded by four operational voltage-sensing domains (VSD) that are each formed by the S1–S4 segments. Consequently, each subunit is capable of responding to changes in membrane potential and dictates whether the pore should be conductive or not. K+ permeation through the pore can be sealed off by two separate gates in series: (a) at the inner S6 bundle crossing (BC gate) and (b) at the level of the selectivity filter (SF gate) located at the extracellular entrance of the pore. Within the last years a general consensus emerged that a direct communication between the S4S5-linker and the bottom part of S6 (S6c) constitutes the coupling with the VSD thus making the BC gate the main voltage-controllable activation gate. While the BC gate listens to the VSD, the SF changes its conformation depending on the status of the BC gate. Through the eyes of an entering K+ ion, the operation of the BC gate apparatus can be compared with the iris-like motion of the diaphragm from a camera whereby its diameter widens. Two main gating motions have been proposed to create this BC gate widening: (1) tilting of the helix whereby the S6 converts from a straight α-helix to a tilted one or (2) swiveling of the S6c whereby the S6 remains bent. Such motions require a flexible hinge that decouples the pre- and post-hinge segment. Roughly at the middle of the S6 there exists a highly conserved glycine residue and a tandem proline motif that seem to fulfill the role of a gating hinge which allows for tilting/swiveling/rotations of the post-hinge S6 segment. In this review we delineate our current view on the operation of the BC gate for controlling K+ permeation in Kv channels.
Collapse
Affiliation(s)
- Alain J Labro
- Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | | |
Collapse
|
9
|
Wang Y, Cong B, Shen J, Liu S, Liu F, Wang N, Huang X. Molecular cloning and functional analysis of a voltage-gated potassium channel in lymphocytes from sea perch, Lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2012; 33:605-613. [PMID: 22651989 DOI: 10.1016/j.fsi.2012.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/22/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Voltage-gated potassium (Kv) channels on cell plasma membrane play an important role in both excitable cells and non-excitable cells and Kv1 subfamily is most extensively studied channel in mammalian cells. Recently, this potassium channel was reported to control processes inside mammalian T lymphocytes such as cell proliferation and volume regulation. Little is known about Kv1 channels in fish. We have postulated the presence of such a channel in lymphocytes and speculated its potential role in immunoregulation in fish. Employing specific primers and RNA template, we cloned a segment of a novel gene from sea perch blood sample and subsequently obtained a full cDNA sequence using RACE approach. Bioinformatic analysis revealed structural and phylogenetic characteristics of a novel Kv channel gene, designated as spKv1.3, which exhibits homologous domains to the members of Kv1.3 family, but it differs notably from some other members of that family at the carboxyl terminus. Full-length of spKv1.3 cDNA is 2152 bp with a 1440 bp open reading frame encoding a protein of 480 amino acids. SpKv1.3 gene is expressed in all of the tested organs and tissues of sea perch. To assess the postulated immune function of spKv1.3, we stimulated lymphocytes with LPS and/or channel blocker 4-AP. Expression levels of messenger RNA (mRNA) of spKv1.3 under stimulation conditions were measured by quantitative RT-PCR. The results showed that LPS can motivate the up-regulation of spKv1.3 expression significantly. Interestingly, we found for the first time that 4-AP with LPS can also increase the spKv1.3 mRNA expression levels in time course. Although 4-AP could block potassium channels physically, we speculated that its effect on blockage of potassium channel may start up an alternative mechanism which feed back and evoke the spKv1.3 mRNA expression.
Collapse
Affiliation(s)
- Yongjie Wang
- Key Laboratory of Marine Bioactive Substance, State Oceanic Administration, Qingdao 266061, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The intricate functions of membrane proteins would not be possible without bends or breaks that are remarkably common in transmembrane helices. The frequent helix distortions are nevertheless surprising because backbone hydrogen bonds should be strong in an apolar membrane, potentially rigidifying helices. It is therefore mysterious how distortions can be generated by the evolutionary currency of random point mutations. Here we show that we can engineer a transition between distinct distorted helix conformations in bacteriorhodopsin with a single-point mutation. Moreover, we estimate the energetic cost of the conformational transitions to be smaller than 1 kcal/mol. We propose that the low energy of distortion is explained in part by the shifting of backbone hydrogen bonding partners. Consistent with this view, extensive backbone hydrogen bond shifts occur during helix conformational changes that accompany functional cycles. Our results explain how evolution has been able to liberally exploit transmembrane helix bending for the optimization of membrane protein structure, function, and dynamics.
Collapse
|
11
|
Sand RM, Atherton DM, Spencer AN, Gallin WJ. jShaw1, a low-threshold, fast-activating K(v)3 from the hydrozoan jellyfish Polyorchis penicillatus. ACTA ACUST UNITED AC 2011; 214:3124-37. [PMID: 21865525 DOI: 10.1242/jeb.057000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated potassium (K(v)) channels work in concert with other ion channels to determine the frequency and duration of action potentials in excitable cells. Little is known about K(v)3 channels from invertebrates, but those that have been characterized generally display slow kinetics. Here, we report the cloning and characterization of jShaw1, the first K(v)3 isolated from a cnidarian, the jellyfish Polyorchis penicillatus, in comparison with mouse K(v)3.1 and K(v)3.2. Using a two-electrode voltage clamp on Xenopus laevis oocytes expressing the channels, we compared steady-state and kinetic properties of macroscopic currents. jShaw1 is fast activating, and opens at potentials approximately 40 mV more hyperpolarized than the mouse K(v)3 channels. There is an inverse relationship between the number of positive charges on the voltage sensor and the half-activation voltage of the channel, contrary to what would be expected with the simplest model of voltage sensitivity. jShaw1 has kinetic characteristics that are substantially different from the mammalian K(v)3 channels, including a much lower sensitivity of early activation rates to incremental voltage changes, and a much faster voltage-dependent transition in the last stages of opening. jShaw1 opening kinetics were affected little by pre-depolarization voltage, in contrast to both mouse channels. Similar to the mouse channels, jShaw1 was half-blocked by 0.7 mmol l(-1) tetraethyl ammonium and 5 mmol l(-1) 4-aminopyridine. Comparison of sequence and functional properties of jShaw1 with the mouse and other reported K(v)3 channels helps to illuminate the general relationship between amino acid sequence and electrophysiological activity in this channel family.
Collapse
Affiliation(s)
- Rheanna M Sand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
12
|
Yang Z, Li S, Zhang L, Ur Rehman A, Liang H. Translocation of α-helix chains through a nanopore. J Chem Phys 2010; 133:154903. [PMID: 20969422 DOI: 10.1063/1.3493332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The translocation of α-helix chains through a nanopore is studied through Langevin dynamics simulations. The α-helix chains exhibit several different characteristics about their average translocation times and the α-helix structures when they transport through the nanopores under the driving forces. First, the relationship between average translocation times τ and the chain length N satisfies the scaling law, τ∼N(α), and the scaling exponent α depends on the driving force f for the small forces while it is close to the Flory exponent (ν) in the other force regions. For the chains with given chain lengths, it is observed that the dependence of the average translocation times can be expressed as τ∼f(-1/2) for the small forces while can be described as τ∼f in the large force regions. Second, for the large driving force, the average number of α-helix structures N(h) decreases first and then increases in the translocation process. The average waiting time of each bead, especially of the first bead, is also dependent on the driving forces. Furthermore, an elasticity spring model is presented to reasonably explain the change of the α-helix number during the translocation and its elasticity can be locally damaged by the large driving forces. Our results demonstrate the unique behaviors of α-helix chains transporting through the pores, which can enrich our insights into and knowledge on biopolymers transporting through membranes.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | | | | | | |
Collapse
|