• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612468)   Today's Articles (1586)   Subscriber (49386)
For: English NJ, Phelan GM. Molecular dynamics study of thermal-driven methane hydrate dissociation. J Chem Phys 2009;131:074704. [DOI: 10.1063/1.3211089] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Walsh MR. Comparing brute force to transition path sampling for gas hydrate nucleation with a flat interface: comments on time reversal symmetry. Phys Chem Chem Phys 2024;26:5762-5772. [PMID: 38214888 DOI: 10.1039/d3cp05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
2
Li K, Chen B, Yang M, Song Y, Sum AK. Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations. J Chem Phys 2023;159:244505. [PMID: 38153154 DOI: 10.1063/5.0174705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]  Open
3
Li K, Chen B, Li M, Jiang L, Song Y, Yang M. Facilitation of Hydrate Dissociation and Structural Evolution by Major Marine Anions under Static Electric Fields. J Phys Chem B 2023;127:10447-10457. [PMID: 37991934 DOI: 10.1021/acs.jpcb.3c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
4
Liu C, Zhang Y, Yang L, Wang C, Lu X, Lin S. Molecular dynamics of the spontaneous generation mechanism of natural gas hydrates during methane nanobubble rupture. Phys Chem Chem Phys 2023;25:22862-22869. [PMID: 37587860 DOI: 10.1039/d3cp02823b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
5
Adibifard M, Olorode O. Large-Scale Nonequilibrium Molecular Studies of Thermal Hydrate Dissociation. J Phys Chem B 2023;127:6543-6550. [PMID: 37462521 PMCID: PMC11008782 DOI: 10.1021/acs.jpcb.3c03391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Indexed: 07/28/2023]
6
Chaudhury A, Moorjani B, Chatterjee S, Adhikari J, Hait S. Molecular insights into the dissociation of carbon dioxide hydrates in the presence of an ionic liquid, [BMIM][PF6]. Chem Phys 2023;571:111943. [DOI: 10.1016/j.chemphys.2023.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
7
Kainai D, Zhang J, Bai D. The Melting Kinetics of Gas Hydrate with Different Cage Occupancy and Empty Cage Distribution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
8
Xu K, Lin Y, Shi Q, Li T, Zhang Z, Wu J. Role of mechanical deformation in the thermal transport of sI-type methane hydrate. Phys Chem Chem Phys 2022;24:5479-5488. [PMID: 35171155 DOI: 10.1039/d1cp04189d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
9
Liu C, Zhou X, Liang D. Molecular insight into carbon dioxide hydrate formation from saline solution. RSC Adv 2021;11:31583-31589. [PMID: 35496851 PMCID: PMC9041558 DOI: 10.1039/d1ra04015d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]  Open
10
Jiao L, Wang Z, Li J, Zhao P, Wan R. Stability and dissociation studies of CO2 hydrate under different systems using molecular dynamic simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
11
Chen C, Hu W, Yang L, Zhao J, Song Y. Gas supersaturation and diffusion joint controlled CH4 nanobubble evolution during hydrate dissociation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
12
Li J, Liang Z, Wang Z, Meng G. Decomposition dynamics of dodecahedron and tetrakaidecahedron structures in methane hydrate by molecular simulations. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
13
Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, Takeya S, Ruppel C, Yang J, English NJ, Schicks JM, Edlmann K, Mehrabian H, Aman ZM, Tohidi B. Gas hydrates in sustainable chemistry. Chem Soc Rev 2020;49:5225-5309. [DOI: 10.1039/c8cs00989a] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
14
Li J, Wang ZL. Fluctuation-dissipation analysis of nonequilibrium thermal transport at the hydrate dissociation interface. Phys Chem Chem Phys 2019;21:23492-23500. [PMID: 31617505 DOI: 10.1039/c9cp04780h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Inhibitory effect of water-based drilling fluid on methane hydrate dissociation. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
16
Decomposition Characterizations of Methane Hydrate Confined inside Nanoscale Pores of Silica Gel below 273.15 K. CRYSTALS 2019. [DOI: 10.3390/cryst9040200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
17
Ghaani MR, English NJ. Hydrogen-/propane-hydrate decomposition: thermodynamic and kinetic analysis. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1567845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
18
Fernández-Fernández A, Pérez-Rodríguez M, Comesaña A, Piñeiro M. Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from Molecular Dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
19
Choudhary N, Chakrabarty S, Roy S, Kumar R. A comparison of different water models for melting point calculation of methane hydrate using molecular dynamics simulations. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
20
Ghaani MR, English NJ. Non-equilibrium molecular-dynamics study of electromagnetic-field-induced propane-hydrate dissociation. J Chem Phys 2018;149:124702. [PMID: 30278679 DOI: 10.1063/1.5029457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
21
Yuhara D, Brumby PE, Wu DT, Sum AK, Yasuoka K. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations. J Chem Phys 2018;148:184501. [DOI: 10.1063/1.5016609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
22
Ghaani MR, English NJ. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis. J Chem Phys 2018;148:114504. [PMID: 29566503 DOI: 10.1063/1.5018192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study. ENERGIES 2017. [DOI: 10.3390/en11010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
24
Liu Y, Zhao L, Deng S, Bai D. Evolution of bubbles in decomposition and replacement process of methane hydrate. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1359745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
25
Smirnov KS. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites. Phys Chem Chem Phys 2017;19:23095-23105. [DOI: 10.1039/c7cp01985h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
26
Zhang Z, Liu CJ, Walsh MR, Guo GJ. Effects of ensembles on methane hydrate nucleation kinetics. Phys Chem Chem Phys 2016;18:15602-8. [PMID: 27222203 DOI: 10.1039/c6cp02171a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
27
A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence. Int J Mol Sci 2016;17:ijms17060378. [PMID: 27240339 PMCID: PMC4926321 DOI: 10.3390/ijms17060378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]  Open
28
Yagasaki T, Matsumoto M, Tanaka H. Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Phys Chem Chem Phys 2015;17:32347-57. [PMID: 26587576 DOI: 10.1039/c5cp03008k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Liu JC, Jia GZ, Liu FH. Dielectric properties of pyridine N-oxide aqueous solution under the static electric field and microwave field. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1037368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
30
Chakraborty SN, English NJ. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights. J Chem Phys 2015;143:154504. [DOI: 10.1063/1.4932681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]  Open
31
Bagherzadeh SA, Alavi S, Ripmeester J, Englezos P. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth. J Chem Phys 2015;142:214701. [DOI: 10.1063/1.4920971] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
32
Yuhara D, Barnes BC, Suh D, Knott BC, Beckham GT, Yasuoka K, Wu DT, Sum AK. Nucleation rate analysis of methane hydrate from molecular dynamics simulations. Faraday Discuss 2015;179:463-74. [PMID: 25876773 DOI: 10.1039/c4fd00219a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Míguez JM, Conde MM, Torré JP, Blas FJ, Piñeiro MM, Vega C. Molecular dynamics simulation of CO2hydrates: Prediction of three phase coexistence line. J Chem Phys 2015;142:124505. [DOI: 10.1063/1.4916119] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
34
Michalis VK, Costandy J, Tsimpanogiannis IN, Stubos AK, Economou IG. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology. J Chem Phys 2015;142:044501. [DOI: 10.1063/1.4905572] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.07.047] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
36
English NJ. Massively parallel molecular-dynamics simulation of ice crystallisation and melting: The roles of system size, ensemble, and electrostatics. J Chem Phys 2014;141:234501. [DOI: 10.1063/1.4903786] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
37
Barnes BC, Knott BC, Beckham GT, Wu DT, Sum AK. Reaction coordinate of incipient methane clathrate hydrate nucleation. J Phys Chem B 2014;118:13236-43. [PMID: 25347748 DOI: 10.1021/jp507959q] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
38
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Dissociation of Methane Hydrate in Aqueous NaCl Solutions. J Phys Chem B 2014;118:11797-804. [DOI: 10.1021/jp507978u] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Yi L, Liang D, Zhou X, Li D, Wang J. Molecular dynamics simulations of carbon dioxide hydrate growth in electrolyte solutions of NaCl and MgCl2. Mol Phys 2014. [DOI: 10.1080/00268976.2014.932454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
40
English NJ, Lauricella M, Meloni S. Massively parallel molecular dynamics simulation of formation of clathrate-hydrate precursors at planar water-methane interfaces: Insights into heterogeneous nucleation. J Chem Phys 2014;140:204714. [DOI: 10.1063/1.4879777] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]  Open
41
Barnes BC, Beckham GT, Wu DT, Sum AK. Two-component order parameter for quantifying clathrate hydrate nucleation and growth. J Chem Phys 2014;140:164506. [PMID: 24784286 DOI: 10.1063/1.4871898] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
42
Uddin M, Coombe D. Kinetics of CH4 and CO2 Hydrate Dissociation and Gas Bubble Evolution via MD Simulation. J Phys Chem A 2014;118:1971-88. [DOI: 10.1021/jp410789j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
43
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Effect of Bubble Formation on the Dissociation of Methane Hydrate in Water: A Molecular Dynamics Study. J Phys Chem B 2014;118:1900-6. [DOI: 10.1021/jp412692d] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
44
English NJ, Clarke ET. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis. J Chem Phys 2013;139:094701. [DOI: 10.1063/1.4819269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Liang S, Kusalik PG. Nucleation of gas hydrates within constant energy systems. J Phys Chem B 2013;117:1403-10. [PMID: 23330680 DOI: 10.1021/jp308395x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
46
Tung YT, Chen LJ, Chen YP, Lin ST. Molecular Dynamics Study on the Growth of Structure I Methane Hydrate in Aqueous Solution of Sodium Chloride. J Phys Chem B 2012;116:14115-25. [DOI: 10.1021/jp308224v] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
47
Santamaria R, Mondragón-Sánchez JA, Bokhimi X. Equation of State of a Model Methane Clathrate Cage. J Phys Chem A 2012;116:3673-80. [DOI: 10.1021/jp2095467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
48
Bagherzadeh SA, Englezos P, Alavi S, Ripmeester JA. Molecular Modeling of the Dissociation of Methane Hydrate in Contact with a Silica Surface. J Phys Chem B 2012;116:3188-97. [DOI: 10.1021/jp2086544] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
49
Smirnov GS, Stegailov VV. Melting and superheating of sI methane hydrate: Molecular dynamics study. J Chem Phys 2012;136:044523. [DOI: 10.1063/1.3679860] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
50
Gorman PD, English NJ, MacElroy JMD. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates. J Chem Phys 2012;136:044506. [DOI: 10.1063/1.3677188] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA