1
|
Yu Q, Li X, Shen C, Yu Z, Guan J, Zheng J. Blue-Shifted and Broadened Fluorescence Enhancement by Visible and Mode-Selective Infrared Double Excitations. J Phys Chem A 2024; 128:2912-2922. [PMID: 38572812 DOI: 10.1021/acs.jpca.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Mode-selective vibrational excitations to modify the electronic states of fluorescein dianion in methanol solutions are carried out with a femtosecond visible pulse synchronized with a tunable high-power, narrow-band picosecond infrared (IR) pulse. In this work, simultaneous intensity enhancement, peak blueshift, and line width broadening of fluorescence are observed in the visible/IR double resonance experiments. Comprehensive investigations on the modulation mechanism with scanning the vibrational excitation frequencies, tuning the time delay between the two excitation pulses, theoretical calculations, and nonlinear and linear spectroscopic measurements suggest that the fluorescence intensity enhancement is caused by the increase of the Franck-Condon factor induced by the vibrational excitations at the electronic ground state. Various enhancement effects are observed as vibrations initially excited by the IR photons relax to populate the vibrational modes of lower frequencies. The peak blueshift and line width broadening are caused by both increasing the Franck-Condon factors among different subensembles because of IR pre-excitation and the long-lived processes induced by the initial IR excitation. The results demonstrate that the fluorescence from the visible/IR double resonance experiments is not a simple sum frequency effect, and vibrational relaxations can produce profound effects modifying luminescence.
Collapse
Affiliation(s)
- Qirui Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xinmao Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Chengzhen Shen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Hassani M, Mallon CJ, Monzy JN, Schmitz AJ, Brewer SH, Fenlon EE, Tucker MJ. Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect. J Chem Phys 2023; 158:224201. [PMID: 37309893 PMCID: PMC10275622 DOI: 10.1063/5.0153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
The regulation of intramolecular vibrational energy redistribution (IVR) to influence energy flow within molecular scaffolds provides a way to steer fundamental processes of chemistry, such as chemical reactivity in proteins and design of molecular diodes. Using two-dimensional infrared (2D IR) spectroscopy, changes in the intensity of vibrational cross-peaks are often used to evaluate different energy transfer pathways present in small molecules. Previous 2D IR studies of para-azidobenzonitrile (PAB) demonstrated that several possible energy pathways from the N3 to the cyano-vibrational reporters were modulated by Fermi resonance, followed by energy relaxation into the solvent [Schmitz et al., J. Phys. Chem. A 123, 10571 (2019)]. In this work, the mechanisms of IVR were hindered via the introduction of a heavy atom, selenium, into the molecular scaffold. This effectively eliminated the energy transfer pathway and resulted in the dissipation of the energy into the bath and direct dipole-dipole coupling between the two vibrational reporters. Several structural variations of the aforementioned molecular scaffold were employed to assess how each interrupted the energy transfer pathways, and the evolution of 2D IR cross-peaks was measured to assess the changes in the energy flow. By eliminating the energy transfer pathways through isolation of specific vibrational transitions, through-space vibrational coupling between an azido (N3) and a selenocyanato (SeCN) probe is facilitated and observed for the first time. Thus, the rectification of this molecular circuitry is accomplished through the inhibition of energy flow using heavy atoms to suppress the anharmonic coupling and, instead, favor a vibrational coupling pathway.
Collapse
Affiliation(s)
- Majid Hassani
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | - Judith N. Monzy
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Andrew J. Schmitz
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Edward E. Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
3
|
Hanes AT, Grieco C, Lalisse RF, Hadad CM, Kohler B. Vibrational relaxation by methylated xanthines in solution: Insights from 2D IR spectroscopy and calculations. J Chem Phys 2023; 158:044302. [PMID: 36725522 DOI: 10.1063/5.0135412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two-dimensional infrared (2D IR) spectroscopy, infrared pump-infrared probe spectroscopy, and density functional theory calculations were used to study vibrational relaxation by ring and carbonyl stretching modes in a series of methylated xanthine derivatives in acetonitrile and deuterium oxide (heavy water). Isotropic signals from the excited symmetric and asymmetric carbonyl stretch modes decay biexponentially in both solvents. Coherent energy transfer between the symmetric and asymmetric carbonyl stretching modes gives rise to a quantum beat in the time-dependent anisotropy signals. The damping time of the coherent oscillation agrees with the fast decay component of the carbonyl bleach recovery signals, indicating that this time constant reflects intramolecular vibrational redistribution (IVR) to other solute modes. Despite their similar frequencies, the excited ring modes decay monoexponentially with a time constant that matches the slow decay component of the carbonyl modes. The slow decay times, which are faster in heavy water than in acetonitrile, approximately match the ones observed in previous UV pump-IR probe measurements on the same compounds. The slow component is assigned to intermolecular energy transfer to solvent bath modes from low-frequency solute modes, which are populated by IVR and are anharmonically coupled to the carbonyl and ring stretch modes. 2D IR measurements indicate that the carbonyl stretching modes are weakly coupled to the delocalized ring modes, resulting in slow exchange that cannot explain the common solvent-dependence. IVR is suggested to occur at different rates for the carbonyl vs ring modes due to differences in mode-specific couplings and not to differences in the density of accessible states.
Collapse
Affiliation(s)
- Alex T Hanes
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Christopher Grieco
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Fica-Contreras SM, Charnay AP, Pan J, Fayer MD. Rethinking Vibrational Stark Spectroscopy: Peak Shifts, Line Widths, and the Role of Non-Stark Solvent Coupling. J Phys Chem B 2023; 127:717-731. [PMID: 36629314 DOI: 10.1021/acs.jpcb.2c06071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A vibration's transition frequency is partly determined by the first-order Stark effect, which accounts for the electric field experienced by the mode. Using ultrafast infrared pump-probe and FT-IR spectroscopies, we characterized both the 0 → 1 and 1 → 2 vibrational transitions' field-dependent peak positions and line widths of the CN stretching mode of benzonitrile (BZN) and phenyl selenocyanate (PhSeCN) in ten solvents. We present a theoretical model that decomposes the observed line width into a field-dependent Stark contribution and a field-independent non-Stark solvent coupling contribution (NSC). The model demonstrates that the field-dependent peak position is independent of the line width, even when the NSC dominates the latter. Experiments show that when the Stark tuning rate is large compared to the NSC (PhSeCN), the line width has a field dependence, albeit with major NSC-induced excursions from linearity. When the Stark tuning rate is small relative to the NSC (BZN), the line width is field-independent. BZN's line widths are substantially larger for the 1 → 2 transition, indicating a 1 → 2 transition enhancement of the NSC. Additionally, we examine, theoretically and experimentally, the difference in the 0 → 1 and 1 → 2 transitions' Stark tuning rates. Second-order perturbation theory combined with density functional theory explain the difference and show that the 1 → 2 transition's Stark tuning rate is ∼10% larger. The Stark tuning rate of PhSeCN is larger than BZN's for both transitions, consistent with the theoretical calculations. This study provides new insights into vibrational line shape components and a more general understanding of the vibrational response to external electric fields.
Collapse
Affiliation(s)
| | - Aaron P Charnay
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
5
|
Mizutani Y, Mizuno M. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. J Chem Phys 2022; 157:240901. [PMID: 36586981 DOI: 10.1063/5.0116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Park JY, Mondal S, Kwon HJ, Sahu PK, Han H, Kwak K, Cho M. Effect of isotope substitution on the Fermi resonance and vibrational lifetime of unnatural amino acids modified with IR probe: A 2D-IR and pump-probe study of 4-azido-L-phenyl alanine. J Chem Phys 2020; 153:164309. [DOI: 10.1063/5.0025289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Young Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Saptarsi Mondal
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Hyeok-Jun Kwon
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Prabhat Kumar Sahu
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Hogyu Han
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
7
|
Schmitz AJ, Pandey HD, Chalyavi F, Shi T, Fenlon EE, Brewer SH, Leitner DM, Tucker MJ. Tuning Molecular Vibrational Energy Flow within an Aromatic Scaffold via Anharmonic Coupling. J Phys Chem A 2019; 123:10571-10581. [PMID: 31735035 DOI: 10.1021/acs.jpca.9b08010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
From guiding chemical reactivity in synthesis or protein folding to the design of energy diodes, intramolecular vibrational energy redistribution harnesses the power to influence the underlying fundamental principles of chemistry. To evaluate the ability to steer these processes, the mechanism and time scales of intramolecular vibrational energy redistribution through aromatic molecular scaffolds have been assessed by utilizing two-dimensional infrared (2D IR) spectroscopy. 2D IR cross peaks reveal energy relaxation through an aromatic scaffold from the azido- to the cyano-vibrational reporters in para-azidobenzonitrile (PAB) and para-(azidomethyl)benzonitrile (PAMB) prior to energy relaxation into the solvent. The rates of energy transfer are modulated by Fermi resonances, which are apparent by the coupling cross peaks identified within the 2D IR spectrum. Theoretical vibrational mode analysis allowed the determination of the origins of the energy flow, the transfer pathway, and a direct comparison of the associated transfer rates, which were in good agreement with the experimental results. Large variations in energy-transfer rates, approximately 1.9 ps for PAB and 23 ps for PAMB, illustrate the importance of strong anharmonic coupling, i.e., Fermi resonance, on the transfer pathways. In particular, vibrational energy rectification is altered by Fermi resonances of the cyano- and azido-modes allowing control of the propensity for energy flow.
Collapse
Affiliation(s)
- Andrew J Schmitz
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Hari Datt Pandey
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Farzaneh Chalyavi
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Tianjiao Shi
- Department of Chemistry , Franklin & Marshall College , Lancaster , Pennsylvania 17604-3003 , United States
| | - Edward E Fenlon
- Department of Chemistry , Franklin & Marshall College , Lancaster , Pennsylvania 17604-3003 , United States
| | - Scott H Brewer
- Department of Chemistry , Franklin & Marshall College , Lancaster , Pennsylvania 17604-3003 , United States
| | - David M Leitner
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Matthew J Tucker
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| |
Collapse
|
8
|
Lee G, Kossowska D, Lim J, Kim S, Han H, Kwak K, Cho M. Cyanamide as an Infrared Reporter: Comparison of Vibrational Properties between Nitriles Bonded to N and C Atoms. J Phys Chem B 2018. [DOI: 10.1021/acs.jpcb.8b00887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giseong Lee
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Joonhyung Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Soobin Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
| | - Hogyu Han
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Fuji M, Obora Y. FeCl 3-Assisted Niobium-Catalyzed Cycloaddition of Nitriles and Alkynes: Synthesis of Alkyl- and Arylpyrimidines Based on Independent Functions of NbCl 5 and FeCl 3 Lewis Acids. Org Lett 2017; 19:5569-5572. [PMID: 28968133 DOI: 10.1021/acs.orglett.7b02708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NbCl5-catalyzed [2 + 2 + 2] cycloaddition of nitriles with alkynes was used to synthesize pyrimidine derivatives. In this reaction, the use of individual Lewis acids, namely NbCl5 and FeCl3, is a key strategy for achieving the reaction using a catalytic amount of NbCl5. The roles of the two Lewis acids were investigated using FT-IR spectroscopy. The results showed that NbCl5 served as an efficient Lewis acid catalyst for nitrile activation, whereas FeCl3 showed stronger Lewis acidity toward pyrimidines, releasing NbCl5 into the catalytic cycle.
Collapse
Affiliation(s)
- Maito Fuji
- Department of Chemistry and Material Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University , Suita, Osaka 564-8680, Japan
| | - Yasushi Obora
- Department of Chemistry and Material Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University , Suita, Osaka 564-8680, Japan
| |
Collapse
|
10
|
Lee KK, Park K, Lee H, Noh Y, Kossowska D, Kwak K, Cho M. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nat Commun 2017; 8:14658. [PMID: 28272396 PMCID: PMC5344975 DOI: 10.1038/ncomms14658] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.
Collapse
Affiliation(s)
- Kyung-Koo Lee
- Department of Chemistry, Kunsan National University, Kunsan, Jeonbuk 573-701, Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hochan Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yohan Noh
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
| | - Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
11
|
Ostrander JS, Knepper R, Tappan AS, Kay JJ, Zanni MT, Farrow DA. Energy Transfer Between Coherently Delocalized States in Thin Films of the Explosive Pentaerythritol Tetranitrate (PETN) Revealed by Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2017; 121:1352-1361. [DOI: 10.1021/acs.jpcb.6b09879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua S. Ostrander
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert Knepper
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Jeffrey J. Kay
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Darcie A. Farrow
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
12
|
Kiefer LM, King JT, Kubarych KJ. Dynamics of rhenium photocatalysts revealed through ultrafast multidimensional spectroscopy. Acc Chem Res 2015; 48:1123-30. [PMID: 25839193 DOI: 10.1021/ar500402r] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rhenium catalysts have shown promise to promote carbon neutrality by reducing a prominent greenhouse gas, CO2, to CO and other starting materials. Much research has focused on identifying intermediates in the photocatalysis mechanism as well as time scales of relevant ultrafast processes. Recent studies have implemented multidimensional spectroscopies to characterize the catalyst's ultrafast dynamics as it undergoes the many steps of its photocycle. Two-dimensional infrared (2D-IR) spectroscopy is a powerful method to obtain molecular structure information while extracting time scales of dynamical processes with ultrafast resolution. Many observables result from 2D-IR experiments including vibrational lifetimes, intramolecular redistribution time scales, and, unique to 2D-IR, spectral diffusion, which is highly sensitive to solute-solvent interactions and motional dynamics. Spectral diffusion, a measure of how long a vibrational mode takes to sample its frequency space due to multiple solvent configurations, has various contributing factors. Properties of the solvent, the solute's structural flexibility, and electronic properties, as well as interactions between the solvent and solute, complicate identifying the origin of the spectral diffusion. With carefully chosen experiments, however, the source of the spectral diffusion can be unveiled. Within the context of a considerable body of previous work, here we discuss the spectral diffusion of several rhenium catalysts at multiple stages in the catalysis. These studies were performed in multiple polar liquids to aid in discovering the contributions of the solvent. We also performed electronic ground state 2D-IR and electronic excited state transient-2D-IR experiments to observe how spectral diffusion changes upon electronic excitation. Our results indicate that with the original Lehn catalyst in THF, relative to the ground state, the spectral diffusion slows by a factor of 3 in the equilibrated triplet metal-to-ligand charge transfer state. We attribute this slowdown to a decrease in dielectric friction as well as an increase in molecular flexibility. It is possible to partially simulate the charge transfer by altering the electron density moderately by adding electron donating or withdrawing substituents symmetrically to the bipyridine ligand. We find that unlike the significant electronic structure change induced by MLCT, such small substituent effects do not influence the spectral diffusion. A solvent study in THF, DMSO, and CH3CN found there to be an explicit solvent dependence that we can correlate to the solvent donicity, which is a measure of its nucleophilicity. Future studies focused on the solvent effects on spectral diffusion in the crucial photoinitiated state can illuminate the role the solvent plays in the catalysis.
Collapse
Affiliation(s)
- Laura M. Kiefer
- Department of Chemistry, University of Michigan, 930 N. University
Ave., Ann Arbor, Michigan 48109, United States
| | - John T. King
- Department of Chemistry, University of Michigan, 930 N. University
Ave., Ann Arbor, Michigan 48109, United States
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University
Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Description of cross-peaks induced by intermolecular vibrational energy transfer in two-dimensional infrared spectroscopy. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Chen H, Bian H, Li J, Wen X, Zhang Q, Zhuang W, Zheng J. Vibrational Energy Transfer: An Angstrom Molecular Ruler in Studies of Ion Pairing and Clustering in Aqueous Solutions. J Phys Chem B 2015; 119:4333-49. [DOI: 10.1021/jp512320a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailong Chen
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Hongtao Bian
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Jiebo Li
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Xiewen Wen
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Qiang Zhang
- Institute of Chemistry,
Chemical Engineering and Food Safety, Bohai University, Jinzhou 121000, People’s Republic of China
| | - Wei Zhuang
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, People’s Republic of China
| | - Junrong Zheng
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| |
Collapse
|
15
|
Characterization of the coordination between Nd3+ and ester groups by using double asynchronous orthogonal sample design approach. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Banno M, Kotani A, Ohta K, Tominaga K. Solute–Solvent Interactions of Benzonitrile in Solutions Studied by Sub-Picosecond Infrared Pump–Probe Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ayumi Kotani
- Department of Chemistry, Graduate School of Science, Kobe University
| | - Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University
- Department of Chemistry, Graduate School of Science, Kobe University
| |
Collapse
|
17
|
Yuan K, Bian H, Shen Y, Jiang B, Li J, Zhang Y, Chen H, Zheng J. Coordination Number of Li+ in Nonaqueous Electrolyte Solutions Determined by Molecular Rotational Measurements. J Phys Chem B 2014; 118:3689-95. [DOI: 10.1021/jp500877u] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaijun Yuan
- State key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hongtao Bian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Yuneng Shen
- State key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bo Jiang
- State key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiebo Li
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Yufan Zhang
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hailong Chen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Junrong Zheng
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Zhao W, He A, Xu Y. Second hyperpolarizability of C-H, C-D, and C≡N stretch vibrations determined from computational Raman activities and a comparison with experiments. J Phys Chem B 2013; 117:15812-8. [PMID: 24020330 DOI: 10.1021/jp4073119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently demonstrated that the second hyperpolarizability γ of a selected vibrational mode of a molecule can be determined by using the computational Raman activity against an internal standard with a known Raman γ value. This approach provides a convenient way for prediction of the γ magnitude of DOVE four wave mixing spectroscopy, an optical analogue to two-dimensional (2D) NMR. Here, by using the Hartree-Fock (HF) method, the density functional theory (DFT) method, and the second-order Møller-Plesset perturbation theory (MP2) method, we extend our early work from the less anharmonic region <2000 cm(-1) into the more anharmonic region >2000 cm(-1) covering C-H, C-D, and C≡N stretching modes of benzene, deuterated benzene, acetonitrile, deuterated acetonitrile, and tetrahydrofuran. The computed Raman γ values of these vibrational modes have been determined by using either the 992 cm(-1) Raman band of benzene or the compound's own Raman band (C-C stretch) around 800-1000 cm(-1) as an internal standard. In this more anharmonic region, the HF method with a larger basis set provides the best outputs and the predicted Raman γ values agree well with experimental values for most of the vibrational modes studied. By choosing a suitable method and basis set, this facile approach could be applied to a broader spectral range for Raman γ estimation of various materials.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry, University of Arkansas at Little Rock , 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | | | | |
Collapse
|
19
|
Zhao W, He A, Xu Y. Raman second hyperpolarizability determination using computational Raman activities and a comparison with experiments. J Phys Chem A 2013; 117:6217-23. [PMID: 23683174 DOI: 10.1021/jp400447a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Doubly vibrationally enhanced (DOVE) four-wave mixing spectroscopy, an optical analogue to 2D NMR, involves two infrared transitions and a Raman transition. The magnitude of the DOVE second hyperpolarizability γ (or third-order susceptibility χ((3))) can be theoretically estimated if the values of the dipolar moments of the two infrared transitions and the γ of the Raman transition are known. The Raman γ can be measured by using the four-wave mixing interferometric method or conventional Raman spectroscopy in the presence of an internal standard. In this work, we examine if one can use the Raman activity computed from density functional theory calculation to determine the Raman γ of selected vibrational modes of several samples including deuterated benzene, acetonitrile, tetrahydrofuran, and sodium benzoate aqueous solution. The 992 cm(-1) Raman band of benzene serves as an internal standard for organic solvents, and the 880 cm(-1) Raman band of hydrogen peroxide is for the aqueous solution sample with known γ values. We have found that the predicted Raman γ values from the computational Raman activities match experimental data reasonably well, suggesting a facile approach to predict the Raman γ of interested systems.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, USA.
| | | | | |
Collapse
|
20
|
Chen H, Bian H, Li J, Wen X, Zheng J. Relative Intermolecular Orientation Probed via Molecular Heat Transport. J Phys Chem A 2013; 117:6052-65. [DOI: 10.1021/jp312604v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailong Chen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hongtao Bian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jiebo Li
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Xiewen Wen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Junrong Zheng
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Li J, Bian H, Wen X, Chen H, Yuan K, Zheng J. Probing ion/molecule interactions in aqueous solutions with vibrational energy transfer. J Phys Chem B 2012; 116:12284-94. [PMID: 22984821 DOI: 10.1021/jp306369w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interactions between model molecules representing building blocks of proteins and the thiocyanate anion, a strong protein denaturant agent, were investigated in aqueous solutions with intermolecular vibrational energy exchange methods. It was found that thiocyanate anions are able to bind to the charged ammonium groups of amino acids in aqueous solutions. The interactions between thiocyanate anions and the amide groups were also observed. The binding affinity between the thiocyanate anion and the charged amino acid residues is about 20 times larger than that between water molecules and the amino acids and about 5-10 times larger than that between the thiocyanate anion and the neutral backbone amide groups. The series of experiments also demonstrates that the chemical nature, rather than the macroscopic dielectric constant, of the ions and molecules plays a critical role in ion/molecule interactions in aqueous solutions.
Collapse
Affiliation(s)
- Jiebo Li
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chen H, Bian H, Li J, Wen X, Zheng J. Ultrafast multiple-mode multiple-dimensional vibrational spectroscopy. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.733116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Liu S, Fourkas JT. Orientational Time Correlation Functions for Vibrational Sum-Frequency Generation. 1. Acetonitrile. J Phys Chem A 2012; 117:5853-64. [DOI: 10.1021/jp306296s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shule Liu
- Department of Chemistry & Biochemistry, ‡Institute for Physical Science and Technology, §Maryland NanoCenter, and ∥Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Department of Chemistry & Biochemistry, ‡Institute for Physical Science and Technology, §Maryland NanoCenter, and ∥Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Bian H, Chen H, Li J, Wen X, Zheng J. Nonresonant and Resonant Mode-Specific Intermolecular Vibrational Energy Transfers in Electrolyte Aqueous Solutions. J Phys Chem A 2011; 115:11657-64. [DOI: 10.1021/jp206937u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hongtao Bian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hailong Chen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jiebo Li
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Xiewen Wen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Junrong Zheng
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
25
|
Zhao W. Measurement of Raman χ(3) and theoretical estimation of DOVE four wave mixing of hydrogen peroxide. J Phys Chem A 2011; 115:6525-30. [PMID: 21591714 DOI: 10.1021/jp202977v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide has strong infrared (IR) transitions ν(6) and its combination band ν(2)+ν(6), which may provide a unique opportunity to implement doubly vibrationally enhanced (DOVE) four wave mixing (FWM) for directly measuring hydrogen peroxide in spectrally overcrowded mixtures. In this work, the magnitude of the DOVE third-order susceptibility χ(3) was theoretically estimated. By using a FWM interferometric method, one of the strongest Raman bands, O-O stretch ν(3) Raman χ(3) of 30 wt % H(2)O(2), was first measured to be 1.2 × 10(-14) esu. The Raman χ(3) of ν(2) was then determined to be 5.3 × 10(-15) esu based on their relative Raman intensities. The resulting Raman χ(3) of ν(2) was used to calculate the DOVE χ(3) of (ν(6), ν(2)+ν(6)), together with the dipolar moments of the two IR transitions determined from IR absorption measurement. The calculated value of DOVE-IR χ(3) was 1.1 × 10(-13) esu for pure H(2)O(2), about 1.5 times larger than that of the strong ring breathing Raman band of benzene. The large DOVE χ(3) suggests the feasibility of direct measurement of hydrogen peroxide in an aqueous environment using DOVE four wave mixing.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States.
| |
Collapse
|
26
|
Bian H, Wen X, Li J, Zheng J. Mode-specific intermolecular vibrational energy transfer. II. Deuterated water and potassium selenocyanate mixture. J Chem Phys 2010; 133:034505. [DOI: 10.1063/1.3458825] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Bian H, Li J, Wen X, Zheng J. Mode-specific intermolecular vibrational energy transfer. I. Phenyl selenocyanate and deuterated chloroform mixture. J Chem Phys 2010. [DOI: 10.1063/1.3429170] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|