1
|
Fouda AEA, Lindblom V, Southworth SH, Doumy G, Ho PJ, Young L, Cheng L, Sorensen SL. Influence of Selective Carbon 1s Excitation on Auger-Meitner Decay in the ESCA Molecule. J Phys Chem Lett 2024; 15:4286-4293. [PMID: 38608168 PMCID: PMC11057383 DOI: 10.1021/acs.jpclett.3c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Two-dimensional spectral mapping is used to visualize how resonant Auger-Meitner spectra are influenced by the site of the initial core-electron excitation and the symmetry of the core-excited state in the trifluoroethyl acetate molecule (ESCA). We observe a significant enhancement of electron yield for excitation of the COO 1s → π* and CF3 1s → σ* resonances unlike excitation at resonances involving the CH3 and CH2 sites. The CF3 1s → π* and CF3 1s → σ* resonance spectra are very different from each other, with the latter populating most valence states equally. Two complementary electronic structure calculations for the photoelectron cross section and Auger-Meitner intensity are shown to effectively reproduce the site- and state-selective nature of the resonant enhancement features. The site of the core-electron excitation and the respective final state hole locality increase the sensistivity of the photoelectron signal at specific functional group sites. This showcases resonant Auger-Meitner decay as a potentially powerful tool for selectively probing structural changes at specific functional group sites of polyatomic molecules.
Collapse
Affiliation(s)
- A. E. A. Fouda
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
- Department
of Physics and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - V. Lindblom
- Department
of Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - S. H. Southworth
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - G. Doumy
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - P. J. Ho
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - L. Young
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
- Department
of Physics and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - L. Cheng
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles St, Baltimore, Maryland 21218, United States
| | - S. L. Sorensen
- Department
of Physics, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
2
|
Hu Z, Shao Q, Li Z, Sun Z, Wang XB, Sun H. Deprotonated sulfamic acid and its homodimers: Does sulfamic acid adopt zwitterion during cluster growth? J Chem Phys 2024; 160:054303. [PMID: 38341690 DOI: 10.1063/5.0190757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
We present a joint experimental and computational study on the geometric and electronic structures of deprotonated sulfamic acid (SA) clusters [(SA)n-H]- (n = 1, 2) employing negative ion photoelectron spectroscopy and high-level ab initio calculations. The photoelectron spectra provide the vertical/adiabatic detachment energy (VDE/ADE) of the sulfamate anion (SM-) H2N●SO3- at 4.85 ± 0.05 and 4.58 ± 0.08 eV, respectively, and the VDE and ADE of the SM-●SA dimer at 6.41 ± 0.05 and 5.87 ± 0.08 eV, respectively. The significantly increased electron binding energies of the dimer confirm the enhanced electronic stability upon the addition of one SA molecule. The CCSD(T)-predicted VDEs/ADEs agree excellently with the experimental data, confirming the identified structures as the most stable ones. Two types of dimer isomers possessing different hydrogen bonding (HB) motifs are identified, corresponding to SM- binding to a zwitterionic SA (SM-●SAz) and a canonical SA (SM-●SAc), respectively. Two N-H⋯O HBs and one superior O-H⋯O HB are formed in the lowest-lying SM-●SAc, while SM-●SAz has three moderate N-H⋯O HBs, with the former being 4.71 kcal/mol more stable. Further theoretical analyses reveal that the binding strength advantage of SM-●SAc over SM-●SAz arises from its significant contributions of orbital interactions between fragments, illustrating that sulfamate strongly interacts with its parent SA acid and preferably chooses the canonical SA in the subsequent cluster formations. Given the prominent presence of SA, this study provides the first evidence that the canonical dimer model of sulfamic acid should exist as a superior configuration during cluster growth.
Collapse
Affiliation(s)
- Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qiaoqiao Shao
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhipeng Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
3
|
Abstract
This Perspective attempts to shed light on developments in the theoretical and experimental study of molecular anions highlighting more recent workers in the field. The species I discuss include (i) valence-bound (singly and multiply charged) anions including atmospheric, catalytic, superhalogen, interfacial, and more; (ii) dipole- and correlation-bound anions including their role as doorways to other states and their appearance "in space", and (iii) metastable anions focusing on tools needed for their theoretical treatment. I also briefly discuss angular distributions of photodetached electrons and their growing utilization in experiments and theory. A recurring theme is the dependence of electron binding energies (EBEs) on the surrounding environment. Some anions that are nonexistent as isolated species evolve to be stable but with small EBEs when weakly solvated (e.g., as in a cluster or at an air-solvent interface). Others existing in isolation only as metastable species become stable when the underlying molecular framework contains one or more positively charged group (e.g., protonated side chains in a peptide) that generates a stabilizing Coulomb potential. On the other hand, a destabilizing Coulomb potential between/among negative sites in a multiply charged anion decreases the EBEs of each such site and generates a repulsive Coulomb barrier that can affect stability.
Collapse
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Abstract
Major advances in X-ray sources including the development of circularly polarized and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of possible signals and their information content are discussed.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, Saint-Etienne F-42023, France
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
5
|
Ru B, Hart CA, Mabbs R, Gozem S, Krylov AI, Sanov A. Dipole effects in the photoelectron angular distributions of the sulfur monoxide anion. Phys Chem Chem Phys 2022; 24:23367-23381. [PMID: 36129043 DOI: 10.1039/d2cp03337b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectron angular distributions (PADs) in SO- photodetachment using linearly polarized 355 nm (3.49 eV), 532 nm (2.33 eV), and 611 nm (2.03 eV) light were investigated via photoelectron imaging spectroscopy. The measurements at 532 and 611 nm access the X3Σ- and a1Δ electronic states of SO, whereas the measurements at 355 nm also access the b1Σ+ state. In aggregate, the photoelectron anisotropy parameter values follow the general trend with respect to electron kinetic energy (eKE) expected for π*-orbital photodetachment. The trend is similar to O2-, but the minimum of the SO- curve is shifted to smaller eKE. This shift is mainly attributed to the exit-channel interactions of the departing electron with the dipole moment of the neutral SO core, rather than the differing shapes of the SO- and O2- molecular orbitals. Of the several ab initio models considered, two approaches yield good agreement with the experiment: one representing the departing electron as a superposition of eigenfunctions of a point dipole-field Hamiltonian, and another describing the outgoing electron in terms of Coulomb waves originating from two separated charge centers, with a partial positive charge on the sulfur and an equal negative charge on the oxygen. These fundamentally related approaches support the conclusion that electron-dipole interactions in the exit channel of SO- photodetachment play an important role in shaping the PADs. While a similar conclusion was previously reached for photodetachment from σ orbitals of CN- (Hart, Lyle, Spellberg, Krylov, Mabbs, J. Phys. Chem. Lett., 2021, 12, 10086-10092), the present work includes the first extension of the dipole-field model to detachment from π* orbitals.
Collapse
Affiliation(s)
- Beverly Ru
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - C Annie Hart
- Department of Chemistry, Washington University, Saint Louis, MO 63130, USA
| | - Richard Mabbs
- Department of Chemistry, Washington University, Saint Louis, MO 63130, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
6
|
Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. Nonadiabatic Excited State Dynamics of Organic Chromophores: Take-Home Messages. J Phys Chem A 2022; 126:6021-6031. [PMID: 36069531 DOI: 10.1021/acs.jpca.2c04671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic excited state dynamics are important in a variety of processes. Theoretical and experimental developments have allowed for a great progress in this area, while combining the two is often necessary and the best approach to obtain insight into the photophysical behavior of molecules. In this Feature Article we use examples of our recent work combining time-resolved photoelectron spectroscopy with theoretical nonadiabatic dynamics to highlight important lessons we learned. We compare the nonadiabatic excited state dynamics of three different organic molecules with the aim of elucidating connections between structure and dynamics. Calculations and measurements are compared for uracil, 1,3-cyclooctadiene, and 1,3-cyclohexadiene. The comparison highlights the role of rigidity in influencing the dynamics and the difficulty of capturing the dynamics accurately with calculations.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.,Division of Theoretical Chemistry and Biology, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States.,Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, United States
| | - Samuel McClung
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Liang W, Pei Z, Mao Y, Shao Y. Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges. J Chem Phys 2022; 156:210901. [PMID: 35676148 PMCID: PMC9162785 DOI: 10.1063/5.0088271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model the excited-state properties and transition processes of the molecules in the gas-phase and in a condensed medium, such as in a solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually, classical embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale approaches of TDDFT/polarizable continuum model (PCM) and TDDFT/molecular mechanics (MM), where a molecular system of interest is designated as the quantum mechanical region and treated with TDDFT, while the environment is usually described using either a PCM or (non-polarizable or polarizable) MM force fields. In this Perspective, we briefly review these TDDFT-related multi-scale models with a specific emphasis on the implementation of analytical energy derivatives, such as the energy gradient and Hessian, the nonadiabatic coupling, the spin-orbit coupling, and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition processes among electronic states. Three variations of the TDDFT method, the Tamm-Dancoff approximation to TDDFT, spin-flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine-Ag20 complex), we emphasize that caution is needed to properly account for system-environment interactions within the TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also highlight the lack of proper treatment of charge transfer between the quantum mechanics and MM regions as well as the need for accelerated TDDFT modelings and interpretability, which calls for new method developments.
Collapse
Affiliation(s)
- WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
8
|
Anstöter CS, Verlet JRR. A Hückel Model for the Excited-State Dynamics of a Protein Chromophore Developed Using Photoelectron Imaging. Acc Chem Res 2022; 55:1205-1213. [PMID: 35172580 PMCID: PMC9084545 DOI: 10.1021/acs.accounts.1c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemistry can be described as the movement of nuclei within molecules and the concomitant instantaneous change in electronic structure. This idea underpins the central chemical concepts of potential energy surfaces and reaction coordinates. To experimentally capture such chemical change therefore requires methods that can probe both the nuclear and electronic structure simultaneously and on the time scale of atomic motion. In this Account, we show how time-resolved photoelectron imaging can do exactly this and how it can be used to build a detailed and intuitive understanding of the electronic structure and excited-state dynamics of chromophores. The chromophore of the photoactive yellow protein (PYP) is used as a case study. This chromophore contains a para-substituted phenolate anion, where the substituent, R, can be viewed as an acrolein derivative. It is shown that the measured photoelectron angular distribution can be directly related to the electronic structure of the para-substituted phenolate anion. By incrementally considering differing R groups, it is also shown that these photoelectron angular distributions are exquisitely sensitive to the conformational flexibility of R and that when R contains a π-system the excited states of the chromophore can be viewed as a linear combination of the π* molecular orbitals on the phenolate (πPh*) and the R substituent (πR*). Such Hückel treatment shows that the S1 state of the PYP chromophore has predominantly πR* character and that it is essentially the same as the chromophore of the green fluorescent protein (GFP). The S1 excited-state dynamics of the PYP chromophore probed by time-resolved photoelectron imaging clearly reveals both structural (nuclear) dynamics through the energy spectrum and electronic dynamics through the photoelectron angular distributions. Both motions can be accurately assigned using quantum chemical calculations, and these are consistent with the intuitive Hückel treatment presented. The photoactive protein chromophores considered here are examples of where a chemists' intuitive Hückel view for ground-state chemistry appears to be transferable to the prediction of photochemical excited-state reactivity. While elegant and insightful, such models have limitations, including nonadiabatic dynamics, which is present in a related PYP chromophore, where a fraction of the S1 state population forms a nonvalence (dipole-bound) state of the anion.
Collapse
Affiliation(s)
- Cate S. Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R. R. Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Gibbard JA, Verlet JRR. Photoelectron imaging of PtI 2 - and its PtI - photodissociation product. J Chem Phys 2022; 156:134303. [PMID: 35395905 DOI: 10.1063/5.0085610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The photoelectron imaging of PtI2 - is presented over photon energies ranging from hν = 3.2 to 4.5 eV. The electron affinity of PtI2 is found to be 3.4 ± 0.1 eV, and the photoelectron spectrum contains three distinct peaks corresponding to three low-lying neutral states. Using a simple d-block model and the measured photoelectron angular distributions, the three states are tentatively assigned. Photodissociation of PtI2 - is also observed, leading to the formation of I- and of PtI-. The latter allows us to determine the electron affinity of PtI to be 2.35 ± 0.10 eV. The spectrum of PtI- is similarly structured with three peaks which, again, can be tentatively assigned using a similar model that agrees with the photoelectron angular distributions.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
10
|
Schuurman MS, Blanchet V. Time-resolved photoelectron spectroscopy: the continuing evolution of a mature technique. Phys Chem Chem Phys 2022; 24:20012-20024. [PMID: 35297909 DOI: 10.1039/d1cp05885a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Time-resolved photoelectron spectroscopy (TRPES) has become one of the most widespread techniques for probing nonadiabatic dynamics in the excited electronic states of molecules. Furthermore, the complementary development of ab initio approaches for the simulation of TRPES signals has enabled the interpretation of these transient spectra in terms of underlying coupled electronic-nuclear dynamics. In this perspective, we discuss the current state-of-the-art approaches, including efforts to push femtosecond pulses into vacuum ultraviolet and soft X-ray regimes as well as the utilization of novel polarizations to use time-resolved optical activity as a probe of nonadiabatic dynamics. We close this perspective with a forward-looking prospectus on the new areas of application for this technique.
Collapse
Affiliation(s)
- Michael S Schuurman
- National Research Council of Canada, 100 Sussex Dr, Ottawa, ON, K1N 6B9, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Dr, Ottawa, ON, Canada.
| | | |
Collapse
|
11
|
Anstöter CS, Curchod BFE, Verlet JRR. Photo-isomerization of the isolated photoactive yellow protein chromophore: what comes before the primary step? Phys Chem Chem Phys 2022; 24:1305-1309. [PMID: 34984423 DOI: 10.1039/d1cp05259d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photoactive proteins typically rely on structural changes in a small chromophore to initiate a biological response. While these changes often involve isomerization as the "primary step", preceding this is an ultrafast relaxation of the molecular framework caused by the sudden change in electronic structure upon photoexcitation. Here, we capture this motion for an isolated model chromophore of the photoactive yellow protein using time-resolved photoelectron imaging. It occurs in <150 fs and is apparent from a spectral shift of ∼70 meV and a change in photoelectron anisotropy. Electronic structure calculations enable the quantitative assignment of the geometric and electronic structure changes to a planar intermediate from which the primary step can then proceed.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | | | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
12
|
Zhang YR, Yuan DF, Wang LS. Probing the Electronic Structure and Spectroscopy of the Pyrrolyl and Imidazolyl Radicals using High-Resolution Photoelectron Imaging of Cryogenically-Cooled Anions. Phys Chem Chem Phys 2022; 24:6505-6514. [DOI: 10.1039/d2cp00189f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-resolution photoelectron imaging and photodetachment spectroscopy of cryogenically-cooled pyrrolide and imidazolide anions are used to probe the electronic structure and spectroscopy of the pyrrolyl and imidazolyl radicals. The high-resolution data...
Collapse
|
13
|
Dauletyarov Y, Ru B, Sanov A. Anion of Oxalyl Chloride: Structure and Spectroscopy. J Phys Chem A 2021; 125:9865-9876. [PMID: 34732045 DOI: 10.1021/acs.jpca.1c07451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure and spectroscopy of the anion of oxalyl chloride are investigated using photoelectron imaging experiments and ab initio modeling. The photoelectron images, spectra, and angular distributions are obtained at 355 and 532 nm wavelengths. The 355 nm spectrum consists of a band assigned to a transition from the ground state of the anion to the ground state of the neutral. Its onset at ∼1.8 eV corresponds to the adiabatic electron affinity (EA) of oxalyl chloride, in agreement with the coupled-cluster calculations predicting an EA of 1.797 eV. The observed vertical detachment energy, 2.33(4) eV, is also in agreement with the theory predictions. The 532 nm spectrum additionally reveals a sharp onset near the photon-energy limit. This feature is ascribed to autodetachment via a low-energy anionic resonance. The results are discussed in the context of the substitution series, which includes glyoxal, methylglyoxal (single methyl substitution), biacetyl (double methyl substitution), and oxalyl chloride (double chlorine substitution). The EAs and anion detachment energies follow the trend: biacetyl < methylglyoxal < glyoxal ≪ oxalyl chloride. The electron-donating character of the methyl group has a destabilizing effect on the substituted anions, reducing the EA from glyoxal to methylglyoxal to biacetyl. In contrast, the strong electron-withdrawing (inductive) power of Cl lends additional stabilization to the oxalyl chloride anion, resulting in a large (∼1 eV) increase in its detachment energy compared to glyoxal.
Collapse
Affiliation(s)
- Yerbolat Dauletyarov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Beverly Ru
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
Hart CA, Lyle J, Spellberg J, Krylov AI, Mabbs R. Role of the Electron-Dipole Interaction in Photodetachment Angular Distributions. J Phys Chem Lett 2021; 12:10086-10092. [PMID: 34624197 DOI: 10.1021/acs.jpclett.1c02882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The importance of including long-range electron-molecule interactions in treatments of photodetachment and/or photoionization is demonstrated. A combined experimental and computational study of CN- detachment is presented in which near threshold anisotropy parameters (β) are measured via photoelectron imaging. Calculated β values, based on an EOM-IP-CCSD/aug-cc-pVTZ Dyson orbital, are obtained using free-particle and point dipole models. The results demonstrate the influence of the molecular dipole moment in the detachment process and provide an explanation of the recently reported near threshold behavior of the overall photodetachment cross section in CN- detachment.
Collapse
Affiliation(s)
- C Annie Hart
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63132, United States
| | - Justin Lyle
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63132, United States
| | - Joseph Spellberg
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63132, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard Mabbs
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63132, United States
| |
Collapse
|
15
|
Jadoun D, Kowalewski M. Time-Resolved Photoelectron Spectroscopy of Conical Intersections with Attosecond Pulse Trains. J Phys Chem Lett 2021; 12:8103-8108. [PMID: 34410134 PMCID: PMC8404190 DOI: 10.1021/acs.jpclett.1c01843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 05/09/2023]
Abstract
Conical Intersections (CIs), which are believed to be ubiquitous in molecular and biological systems, open up ultrafast nonradiative decay channels. A superposition of electronic states is created when a molecule passes through a CI and the nuclear wave packet branches. The resulting electronic coherence can be considered a unique signature of the CI. The involved electronic states can be resolved in the energy domain with photoelectron spectroscopy using a femtosecond pulse as a probe. However, the observation of the created electronic coherence in the time domain requires probe pulses with several electron volts of bandwidth. Attosecond pulses can probe the electronic coherence but are unable to resolve the involved electronic states. In this Letter, we propose to address this restriction by using time-resolved photoelectron spectroscopy with an attosecond pulse train as a probe. We theoretically demonstrate that the resulting photoelectron spectrum may yield energy resolution as well as the information on the created coherences in the time domain.
Collapse
Affiliation(s)
- Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Moitra T, Coriani S, Decleva P. Capturing Correlation Effects on Photoionization Dynamics. J Chem Theory Comput 2021; 17:5064-5079. [PMID: 34254803 DOI: 10.1021/acs.jctc.1c00303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly correlated combination of the equation-of-motion coupled cluster (EOM-CC) Dyson orbital and the multicentric B-spline time-dependent density functional theory (TDDFT)-based approach is proposed and implemented within the single-channel approximation to describe molecular photoionization processes. The twofold objective of the approach is to capture interchannel coupling effects, missing in the B-spline DFT treatment, and to explore the response of Dyson orbitals to strong correlation effects and its influence on the photoionization observables. We validate our scheme by computing partial cross sections, branching ratios, asymmetry parameters, and molecular frame photoelectron angular distributions of simple molecules. Finally, the method has been applied to the study of photoelectron spectra of the Ni(C3H5)2 molecule, where giant correlation effects completely destroy the Koopmans picture.
Collapse
Affiliation(s)
- Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kgs. Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kgs. Lyngby, Denmark.,NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Piero Decleva
- Istituto Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34121 Trieste, Italy
| |
Collapse
|
17
|
Hu Z, Sun Z, Sun H. Simulation of Negative Ion Photoelectron Spectroscopy Using a Nuclear Ensemble Approach: Implications from a Nuclear Vibration Effect. J Phys Chem A 2021; 125:6621-6628. [PMID: 34318668 DOI: 10.1021/acs.jpca.1c04246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The negative ion photoelectron spectroscopy (NIPES) has been proven to be a powerful technique to reveal the electronic structures and spectroscopic properties of various cluster anions/radicals with very high precision. However, direct comparisons of the theoretical NIPES with experimental measurements remain challenging. Particularly the nuclear vibration effect and the ionization probability are typically ignored in reproducing NIPES. In this work, the NIPES of three representative anions (NaS5-, P2N3-, and HCPN3-) with significantly different spectral features were simulated by combining the nuclear ensemble approach (NEA) and Dyson orbitals (DOs). Overall, the simulated NIPES are in good agreement with the experimentally determined ones, confirming the robustness of such a strategy. The analysis of frontier molecular orbitals (MOs) and DOs further suggests the similar mixed characters for the first ionized doublet (D0) and adjacent D1 states of NaS5- with distributions on the side sulfur atoms. And the D0 of P2N3* is confirmed as the lowest energy σ radical state; however, the D0 of HCPN3* should possess a mixture of π and σ electrons by taking into account the nuclear vibration effect. Next, the broader vibrational distribution and stronger main vibration modes of P2N3- and HCPN3- explain why the nuclear vibration possesses a more pronounced influence in reproducing their NIPES while it has little effect on NaS5-. Last, the limitations based on the double-harmonic approximation model and density of state method were also discussed, highlighting that the ionization probability and orbital relaxation effect during the ionization process should be reasonably considered.
Collapse
Affiliation(s)
- Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
18
|
Piteša T, Sapunar M, Ponzi A, Gelin MF, Došlić N, Domcke W, Decleva P. Combined Surface-Hopping, Dyson Orbital, and B-Spline Approach for the Computation of Time-Resolved Photoelectron Spectroscopy Signals: The Internal Conversion in Pyrazine. J Chem Theory Comput 2021; 17:5098-5109. [PMID: 34269561 DOI: 10.1021/acs.jctc.1c00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A computational protocol for simulating time-resolved photoelectron signals of medium-sized molecules is presented. The procedure is based on a trajectory surface-hopping description of the excited-state dynamics and a combined Dyson orbital and multicenter B-spline approach for the computation of cross sections and asymmetry parameters. The accuracy of the procedure has been illustrated for the case of ultrafast internal conversion of gas-phase pyrazine excited to the 1B2u(ππ*) state. The simulated spectra and the asymmetry map are compared to the experimental data, and a very good agreement was obtained without applying any energy-dependent rescaling or broadening. An interesting side result of this work is the finding that the signature of the 1Au(nπ*) state is indistinguishable from that of the 1B3u(nπ*) state in the time-resolved photoelectron spectrum. By locating four symmetrically equivalent minima on the lowest-excited (S1) adiabatic potential energy surface of pyrazine, we revealed the strong vibronic coupling of the 1Au(nπ*) and 1B3u(nπ*) states near the S1 ← S0 band origin.
Collapse
Affiliation(s)
- Tomislav Piteša
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marin Sapunar
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Aurora Ponzi
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Piero Decleva
- Dipartimento di Scienze Chimiche, Università di Trieste, I-34127 Trieste, Italy
| |
Collapse
|
19
|
Kanno M, Mignolet B, Remacle F, Kono H. Identification of an ultrafast internal conversion pathway of pyrazine by time-resolved vacuum ultraviolet photoelectron spectrum simulations. J Chem Phys 2021; 154:224304. [PMID: 34241214 DOI: 10.1063/5.0048900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The internal conversion from the optically bright S2 (1B2u, ππ*) state to the dark S1 (1B3u, nπ*) state in pyrazine is a standard benchmark for experimental and theoretical studies on ultrafast radiationless decay. Since 2008, a few theoretical groups have suggested significant contributions of other dark states S3 (1Au, nπ*) and S4 (1B2g, nπ*) to the decay of S2. We have previously reported the results of nuclear wave packet simulations [Kanno et al., Phys. Chem. Chem. Phys. 17, 2012 (2015)] and photoelectron spectrum calculations [Mignolet et al., Chem. Phys. 515, 704 (2018)] that support the conventional two-state picture. In this article, the two different approaches, i.e., wave packet simulation and photoelectron spectrum calculation, are combined: We computed the time-resolved vacuum ultraviolet photoelectron spectrum and photoelectron angular distribution for the ionization of the wave packet transferred from S2 to S1. The present results reproduce almost all the characteristic features of the corresponding experimental time-resolved spectrum [Horio et al., J. Chem. Phys. 145, 044306 (2016)], such as a rapid change from a three-band to two-band structure. This further supports the existence and character of the widely accepted pathway (S2 → S1) of ultrafast internal conversion in pyrazine.
Collapse
Affiliation(s)
- Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Benoît Mignolet
- Theoretical Physical Chemistry, UR MOLSYS, University of Liège, B4000 Liège, Belgium
| | - Françoise Remacle
- Theoretical Physical Chemistry, UR MOLSYS, University of Liège, B4000 Liège, Belgium
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Piechaczek A, Bartels C, Hock C, Rost JM, von Issendorff B. Decoherence-Induced Universality in Simple Metal Cluster Photoelectron Angular Distributions. PHYSICAL REVIEW LETTERS 2021; 126:233201. [PMID: 34170164 DOI: 10.1103/physrevlett.126.233201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Measured angular distributions of photoelectrons from size-selected copper and sodium cluster anions are demonstrated to exhibit a universal behavior independent of the initial electron state, cluster size, or material, which can be traced back to momentum conservation upon photoemission. Quantum simulations reproduce the universality under the assumption that multielectron dynamics localizes the emission on the cluster surface and renders the cluster opaque to photoelectrons, thereby quenching interference effects that would otherwise obscure this almost classical behavior.
Collapse
Affiliation(s)
- Adam Piechaczek
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Christof Bartels
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Christian Hock
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jan-Michael Rost
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Bernd von Issendorff
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Anstöter CS, Verlet JRR. Modeling the Photoelectron Angular Distributions of Molecular Anions: Roles of the Basis Set, Orbital Choice, and Geometry. J Phys Chem A 2021; 125:4888-4895. [PMID: 34042462 DOI: 10.1021/acs.jpca.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study investigating the effect of the basis set, orbital choice, and geometry on the modeling of photoelectron angular distributions (PADs) of molecular anions is presented. Experimental and modeled PADs for a number of molecular anions, including both closed- and open-shell systems, are considered. Guidelines are suggested for chemists who wish to design calculations to capture the correct chemical physics of the anisotropy of photodetachment, while balancing the computational cost associated with larger molecular anions.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
22
|
Gozem S, Krylov AI. The
ezSpectra
suite: An easy‐to‐use toolkit for spectroscopy modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1546] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry Georgia State University Atlanta Georgia USA
| | - Anna I. Krylov
- Department of Chemistry University of Southern California Los Angeles California USA
| |
Collapse
|
23
|
Harb H, Hratchian HP. ΔSCF Dyson orbitals and pole strengths from natural ionization orbitals. J Chem Phys 2021; 154:084104. [DOI: 10.1063/5.0040454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Hassan Harb
- Department of Chemistry and Chemical Biology and Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology and Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| |
Collapse
|
24
|
Anstöter CS, Verlet JRR. Photoelectron imaging of the SO 3 anion: vibrational resolution in photoelectron angular distributions*. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1821921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Blackstone CC, Wallace AA, Sanov A. Photoelectron angular distributions in photodetachment from polarised d-like states: the case of HO2−. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1831636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Adam A. Wallace
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
26
|
Vidal ML, Pokhilko P, Krylov AI, Coriani S. Equation-of-Motion Coupled-Cluster Theory to Model L-Edge X-ray Absorption and Photoelectron Spectra. J Phys Chem Lett 2020; 11:8314-8321. [PMID: 32897075 DOI: 10.1021/acs.jpclett.0c02027] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present an extension of the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) theory for computing X-ray L-edge spectra, both in the absorption (XAS) and in the photoelectron (XPS) regimes. The approach is based on the perturbative evaluation of spin-orbit couplings using the Breit-Pauli Hamiltonian and nonrelativistic wave functions described by the fc-CVS-EOM-CCSD ansatz (EOM-CCSD within the frozen-core core-valence separated (fc-CVS) scheme). The formalism is based on spinless one-particle density matrices. The approach is illustrated by modeling XAS and XPS of several model systems ranging from Ar to small molecules containing sulfur and silicon.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Pavel Pokhilko
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Simons J. Ejecting Electrons from Molecular Anions via Shine, Shake/Rattle, and Roll. J Phys Chem A 2020; 124:8778-8797. [DOI: 10.1021/acs.jpca.0c08016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Affiliation(s)
- Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
29
|
Ortiz JV. Dyson-orbital concepts for description of electrons in molecules. J Chem Phys 2020; 153:070902. [DOI: 10.1063/5.0016472] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- J. V. Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
30
|
Anstöter CS, Verlet JRR. Gas-Phase Synthesis and Characterization of the Methyl-2,2-dicyanoacetate Anion Using Photoelectron Imaging and Dipole-Bound State Autodetachment. J Phys Chem Lett 2020; 11:6456-6462. [PMID: 32687376 DOI: 10.1021/acs.jpclett.0c02036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The methyl-2,2-dicyanoacetate anion is synthesized in an electrospray ionization source through a gas-phase reaction involving tetracyanoethylene and methanol. Photoelectron imaging is used to determine the isomeric form of the product. The photoelectron spectra and angular distributions are consistent with only a single isomer. Additionally, mode-specific vibrational autodetachment is observed. This can be correlated with the emission from a photoexcited dipole-bound state by considering the IR spectrum of the neutral molecule, adding further confirmation of the isomeric form and providing a binding energy of the dipole-bound state. Our experiments show how conventional photoelectron imaging can be used to determine detailed information about gas-phase reaction products.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
31
|
Moitra T, Ponzi A, Koch H, Coriani S, Decleva P. Accurate Description of Photoionization Dynamical Parameters. J Phys Chem Lett 2020; 11:5330-5337. [PMID: 32501713 DOI: 10.1021/acs.jpclett.0c01337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calculation of dynamical parameters for photoionization requires an accurate description of the initial and final states of the system, as well as of the outgoing electron. We show that using a linear combination of atomic orbitals B-spline density functional theory (DFT) method to describe the outgoing electron, in combination with correlated equation of motion coupled cluster singles and double Dyson orbitals, gives good agreement with experiment and outperforms other simpler approaches, like plane and Coulomb waves, used to describe the photoelectron. Results are presented for cross-sections, angular distributions, and dichroic parameters in chiral molecules, as well as for photoionization from excited states. We also present a comparison with the results obtained using Hartree-Fock and DFT molecular orbitals selected according to Koopmans' theorem for the bound states.
Collapse
Affiliation(s)
- Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Aurora Ponzi
- Department of Physical Chemistry, Institut Rud̵er Bošković, 10000 Zagreb, Croatia
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34121 Trieste, Italy
| |
Collapse
|
32
|
Anstöter CS, Curchod BFE, Verlet JRR. Geometric and electronic structure probed along the isomerisation coordinate of a photoactive yellow protein chromophore. Nat Commun 2020; 11:2827. [PMID: 32499507 PMCID: PMC7272410 DOI: 10.1038/s41467-020-16667-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/15/2020] [Indexed: 01/29/2023] Open
Abstract
Understanding the connection between the motion of the nuclei in a molecule and the rearrangement of its electrons lies at the heart of chemistry. While many experimental methods have been developed to probe either the electronic or the nuclear structure on the timescale of atomic motion, very few have been able to capture both these changes in concert. Here, we use time-resolved photoelectron imaging to probe the isomerisation coordinate on the excited state of an isolated model chromophore anion of the photoactive yellow protein. By probing both the electronic structure changes as well as nuclear dynamics, we are able to uniquely measure isomerisation about a specific bond. Our results demonstrate that the photoelectron signal dispersed in time, energy and angle combined with calculations can track the evolution of both electronic and geometric structure along the adiabatic state, which in turn defines that chemical transformation. Resolving concerted nuclear and electronic motion in real-time is a primary goal in chemistry. The authors monitor nuclear and valence electronic dynamics in the excited state single-bond isomerisation of a chromophore of photoactive yellow protein, using time-resolved photoelectron imaging and electronic structure calculations.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | | | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
33
|
Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+. ATOMS 2020. [DOI: 10.3390/atoms8020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral of the velocity-weighted cross section that gives the radiative attachment rate coefficient α R A for producing the negative hydrogen ion H − or its antimatter equivalent, the positive antihydrogen ion H ¯ + , we found the analytic form for this integral. This procedure is useful for temperatures below 700 K, the region for which the production of H ¯ + has potential use as an intermediate stage in the cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing the gravitational interaction of the anti-atom. Our results, utilizing a 50-term explicitly correlated exponential wave function, confirm our prior numerical results.
Collapse
|
34
|
Grell G, Bokarev SI. Multi-reference protocol for (auto)ionization spectra: Application to molecules. J Chem Phys 2020; 152:074108. [DOI: 10.1063/1.5142251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
35
|
Lu Y, Zhao J, Tang R, Fu X, Ning C. Measurement of electron affinity of iridium atom and photoelectron angular distributions of iridium anion. J Chem Phys 2020; 152:034302. [DOI: 10.1063/1.5134535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuzhu Lu
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Jing Zhao
- Security Printing Institute of People’s Bank of China, Beijing 100070, China
| | - Rulin Tang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Xiaoxi Fu
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Chuangang Ning
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| |
Collapse
|
36
|
Gulania S, Jagau TC, Sanov A, Krylov AI. The quest to uncover the nature of benzonitrile anion. Phys Chem Chem Phys 2020; 22:5002-5010. [DOI: 10.1039/c9cp06484b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anionic states of benzonitrile are investigated by high-level electronic structure methods.
Collapse
Affiliation(s)
- Sahil Gulania
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Andrei Sanov
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
37
|
Manna S, Mishra S. Correlation effects in the photoelectron spectrum and photoionization dynamics of OsO 4. Phys Chem Chem Phys 2020; 22:628-641. [DOI: 10.1039/c9cp05062k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The valence shell photoelectron spectrum of OsO4+ is studied using the Dyson orbital theory and the photoionization cross-section and asymmetry parameters are analyzed by partial wave decomposition of the photoelectron.
Collapse
Affiliation(s)
- Soumitra Manna
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
38
|
Vidal ML, Krylov AI, Coriani S. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to X-ray photoelectron spectroscopy of ground and excited states. Phys Chem Chem Phys 2020; 22:2693-2703. [DOI: 10.1039/c9cp03695d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionization energies and Dyson orbitals within frozen-core core–valence separated equation-of-motion coupled cluster singles and doubles (fc-CVS-EOM-CCSD) enable efficient and reliable calculations of standard XPS and of UV-pump/XPS probe spectra.
Collapse
Affiliation(s)
- Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- Kongens Lyngby
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- Kongens Lyngby
- Denmark
| |
Collapse
|
39
|
Ivanov MV, Jagau TC, Zhu GZ, Hudson ER, Krylov AI. In search of molecular ions for optical cycling: a difficult road. Phys Chem Chem Phys 2020; 22:17075-17090. [DOI: 10.1039/d0cp02921a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical cycling, a continuous photon scattering off atoms or molecules, is the key tool in quantum information science.
Collapse
Affiliation(s)
- Maxim V. Ivanov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Thomas-C. Jagau
- Department of Chemistry
- Katholieke Universiteit Leuven
- Leuven
- Belgium
| | - Guo-Zhu Zhu
- Department of Physics and Astronomy
- University of California Los Angeles
- Los Angeles
- USA
| | - Eric R. Hudson
- Department of Physics and Astronomy
- University of California Los Angeles
- Los Angeles
- USA
- UCLA Center for Quantum Science and Engineering
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
40
|
The dicarbon bonding puzzle viewed with photoelectron imaging. Nat Commun 2019; 10:5199. [PMID: 31729361 PMCID: PMC6858380 DOI: 10.1038/s41467-019-13039-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 11/09/2022] Open
Abstract
Bonding in the ground state of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}$$\end{document}2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2$$\end{document}2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3$$\end{document}3, or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4$$\end{document}4. Here we report on photoelectron spectra of the C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}^{-}$$\end{document}2− anion, measured at a range of wavelengths using a high-resolution photoelectron imaging spectrometer, which reveal both the ground \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${X}^{1}{\Sigma}_{\mathrm{g}}^{+}$$\end{document}X1Σg+ and first-excited \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${a}^{3}{\Pi}_{{\mathrm{u}}}$$\end{document}a3Πu electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from predominantly \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s$$\end{document}s-like (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3{\sigma}_{\mathrm{g}}$$\end{document}3σg) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}p-like (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1{\pi }_{{\mathrm{u}}}$$\end{document}1πu) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$sp$$\end{document}sp-mixed orbitals. This result suggests that the dominant contribution to the dicarbon bonding involves a double-bonded configuration, with 2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π bonds and no accompanying \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma$$\end{document}σ bond. In spite of its apparent simplicity, the dicarbon molecule has a bonding structure which is matter of debate. Here the authors measure high-resolution spectra of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathrm{C}}}_{2}$$\end{document}C2 anion by photoelectron imaging, revealing a bonding configuration dominated by a double \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi$$\end{document}π bond, with no accompanying \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma$$\end{document}σ bond.
Collapse
|
41
|
Laws BA, Cavanagh SJ, Lewis BR, Gibson ST. Wigner Near-Threshold Effects in the Photoelectron Angular Distribution of NO2–. J Phys Chem A 2019; 123:10418-10425. [DOI: 10.1021/acs.jpca.9b09073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. A. Laws
- Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - S. J. Cavanagh
- Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - B. R. Lewis
- Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - S. T. Gibson
- Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
42
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Temporal and spatially resolved imaging of the correlated nuclear-electronic dynamics and of the ionized photoelectron in a coherently electronically highly excited vibrating LiH molecule. J Chem Phys 2019; 151:134310. [DOI: 10.1063/1.5116250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephan van den Wildenberg
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - F. Remacle
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
43
|
Brumboiu IE, Eriksson O, Norman P. Photoelectron Spectroscopy of Molecules Beyond the Electric Dipole Approximation. J Chem Theory Comput 2019; 15:5483-5494. [DOI: 10.1021/acs.jctc.9b00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iulia Emilia Brumboiu
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Korea
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
- School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
44
|
Palacios A, Martín F. The quantum chemistry of attosecond molecular science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alicia Palacios
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Institute of Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid Spain
| | - Fernando Martín
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nano) Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
45
|
Liu Y, Ning CG, Wang LS. Double- and multi-slit interference in photodetachment from nanometer organic molecular anions. J Chem Phys 2019; 150:244302. [DOI: 10.1063/1.5100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuan Liu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Chuan-Gang Ning
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 10084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
46
|
Sapunar M, Piteša T, Davidović D, Došlić N. Highly Efficient Algorithms for CIS Type Excited State Wave Function Overlaps. J Chem Theory Comput 2019; 15:3461-3469. [DOI: 10.1021/acs.jctc.9b00235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marin Sapunar
- Centre for Informatics and Computing, Rudjer Bošković Institute, Zagreb 10000, Croatia
| | - Tomislav Piteša
- Centre for Informatics and Computing, Rudjer Bošković Institute, Zagreb 10000, Croatia
| | - Davor Davidović
- Centre for Informatics and Computing, Rudjer Bošković Institute, Zagreb 10000, Croatia
| | - Nadja Došlić
- Centre for Informatics and Computing, Rudjer Bošković Institute, Zagreb 10000, Croatia
| |
Collapse
|
47
|
Barnes JV, Yoder BL, Signorell R. Magic Numbers for the Photoelectron Anisotropy in Li-Doped Dimethyl Ether Clusters. J Phys Chem A 2019; 123:2379-2386. [PMID: 30811202 PMCID: PMC6441944 DOI: 10.1021/acs.jpca.8b12262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Photoelectron velocity
map imaging of Li(CH3OCH3)n clusters (1 ≤ n ≤ 175) is used
to search for magic numbers related
to the photoelectron anisotropy. Comparison with density functional
calculations reveals magic numbers at n = 4, 5, and
6, resulting from the symmetric charge distribution with high s-character
of the highest occupied molecular orbital. Since each of these three
cluster sizes correspond to the completion of a first coordination
shell, they can be considered as “isomeric motifs of the first
coordination shell”. Differences in the photoelectron anisotropy,
the vertical ionization energies and the enthalpies of vaporization
between Li(CH3OCH3)n and Na(CH3OCH3)n can be rationalized in terms of differences in their solvation shells,
atomic ionization energies, polarizabilities, metal–oxygen
bonds, ligand–ligand interactions and by cooperative effects.
Collapse
Affiliation(s)
- Jonathan V Barnes
- ETH Zürich , Laboratory of Physical Chemistry , Vladimir-Prelog-Weg 2 , CH-8093 Zürich , Switzerland
| | - Bruce L Yoder
- ETH Zürich , Laboratory of Physical Chemistry , Vladimir-Prelog-Weg 2 , CH-8093 Zürich , Switzerland
| | - Ruth Signorell
- ETH Zürich , Laboratory of Physical Chemistry , Vladimir-Prelog-Weg 2 , CH-8093 Zürich , Switzerland
| |
Collapse
|
48
|
Ponzi A, Quadri N, Angeli C, Decleva P. Electron correlation effects in the photoionization of CO and isoelectronic diatomic molecules. Phys Chem Chem Phys 2019; 21:1937-1951. [PMID: 30632573 DOI: 10.1039/c8cp06103c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper investigates the first sigma satellite band, which is by far the most prominent, in the valence photoelectron spectra for a set of isoelectronic diatomic molecules: carbon monoxide, carbon monosulfide, carbon monoselenide, silicon monoxide and boron monofluoride. In particular, we analyze the effect of the electronic structure, with the change of the atomic pair along the row and column of the periodic table on the position of the satellite peak as well as on the related dynamical observables profiles. For this investigation, highly correlated calculations have been performed on the primary ionic states and the satellite band for all the molecules considered. Cross sections for the primary ionic states, calculated using Dyson orbitals, have been compared with those obtained with Hartree-Fock and Density Functional Theory to probe the impact of the correlation in the bound states on the photoionization observables. Limitations of a simple intensity borrowing mechanism clearly result from the analysis of the satellite state, characterized by different features with respect to the relevant primary states.
Collapse
Affiliation(s)
- A Ponzi
- Department of Physical Chemistry, R. Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
49
|
Ivanov MV, Bangerter FH, Krylov AI. Towards a rational design of laser-coolable molecules: insights from equation-of-motion coupled-cluster calculations. Phys Chem Chem Phys 2019; 21:19447-19457. [DOI: 10.1039/c9cp03914g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Access to cold molecules is critical for quantum information science, design of new sensors, ultracold chemistry, and search of new phenomena.
Collapse
Affiliation(s)
- Maxim V. Ivanov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Felix H. Bangerter
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- Ludwig Maximilian University Munich
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
50
|
Stoecklin T, Halvick P, Lara-Moreno M, Trabelsi T, Hochlaf M. On the gas-phase formation of the HCO - anion: accurate quantum study of the H - + CO radiative association and HCO radiative electron attachment. Faraday Discuss 2018; 212:101-116. [PMID: 30234209 DOI: 10.1039/c8fd00103k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen anion has never been observed in the interstellar medium, but it is most likely present in some interstellar regions. Since direct detection appears especially difficult, improving the knowledge of the astrochemical processes involving this anion should be valuable in defining a way of indirect detection. We present the first study of the radiative association of H- and CO to form the HCO- anion within a quantum time-independent approach. We use a state-of-the-art potential energy surface which has been calculated for the present study. The calculated radiative association rate coefficient is monotonically decreasing from 6 × 10-16 to 5 × 10-19 cm3 per molecule per s across the 0.01-1000 K temperature range. At the typical temperature of the cold interstellar medium, ∼10 K, the radiative association rate is ∼2 × 10-17 cm3 per molecule per s. On the other hand, the plane wave approximation is used to calculate the HCO radiative electron attachment rate coefficient. It is found to be almost constant and also equal to 2 × 10-17 cm3 per molecule per s. Setting aside the question of the abundances of the reactants of both processes, these results demonstrate that among the two gas-phase modes of production of the HCO- anion in cold interstellar medium considered in this study, the H- + CO radiative association is dominating below 10 K while the radiative electron attachment rate is larger above 10 K.
Collapse
Affiliation(s)
- Thierry Stoecklin
- Université de Bordeaux, Institut des Sciences Moléculaires, CNRS-UMR5255, 33405 Talence Cedex, France.
| | - Philippe Halvick
- Université de Bordeaux, Institut des Sciences Moléculaires, CNRS-UMR5255, 33405 Talence Cedex, France.
| | - Miguel Lara-Moreno
- Université de Bordeaux, Institut des Sciences Moléculaires, CNRS-UMR5255, 33405 Talence Cedex, France.
| | - Tarek Trabelsi
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, CNRS-UMR8208, 77454 Marne-la-Vallée, France
| | - Majdi Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, CNRS-UMR8208, 77454 Marne-la-Vallée, France
| |
Collapse
|