1
|
Lee JH, Jung Y. Dynamical Phase Transition in Kinetically Constrained Models with Energy-Activity Double-Bias Trajectory Ensemble. J Phys Chem Lett 2024; 15:1553-1563. [PMID: 38300602 DOI: 10.1021/acs.jpclett.3c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We investigate the dynamical phase transitions in two representative kinetically constrained models, the 1D Fredrickson-Andersen and East models, by utilizing a recently developed s,g double-bias ensemble approach. In this ensemble, the fields s and g are applied to bias the dynamical activity and trajectory energy, respectively, in the trajectory ensemble. We first confirm that the dynamical phase transitions are indeed first-order in both the models. The phase diagrams in (s, g, T) space obtained via extensive numerical simulations show good qualitative agreement with the mean-field results. We also demonstrate that the temperature-dependent dynamical phase transition is possible in the systems when both fields are applied simultaneously. The trajectory energy and dynamical activity exhibit strong correlations for both systems. From extensive finite-size scaling analyses using the system size and observation time, we obtain scaling functions for the susceptibility and field and find scaling exponents that are model-dependent.
Collapse
Affiliation(s)
- Jay-Hak Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Shmilovich K, Ferguson AL. Girsanov Reweighting Enhanced Sampling Technique (GREST): On-the-Fly Data-Driven Discovery of and Enhanced Sampling in Slow Collective Variables. J Phys Chem A 2023; 127:3497-3517. [PMID: 37036804 DOI: 10.1021/acs.jpca.3c00505] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Molecular dynamics simulations of microscopic phenomena are limited by the short integration time steps which are required for numerical stability but which limit the practically achievable simulation time scales. Collective variable (CV) enhanced sampling techniques apply biases to predefined collective coordinates to promote barrier crossing, phase space exploration, and sampling of rare events. The efficacy of these techniques is contingent on the selection of good CVs correlated with the molecular motions governing the long-time dynamical evolution of the system. In this work, we introduce Girsanov Reweighting Enhanced Sampling Technique (GREST) as an adaptive sampling scheme that interleaves rounds of data-driven slow CV discovery and enhanced sampling along these coordinates. Since slow CVs are inherently dynamical quantities, a key ingredient in our approach is the use of both thermodynamic and dynamical Girsanov reweighting corrections for rigorous estimation of slow CVs from biased simulation data. We demonstrate our approach on a toy 1D 4-well potential, a simple biomolecular system alanine dipeptide, and the Trp-Leu-Ala-Leu-Leu (WLALL) pentapeptide. In each case GREST learns appropriate slow CVs and drives sampling of all thermally accessible metastable states starting from zero prior knowledge of the system. We make GREST accessible to the community via a publicly available open source Python package.
Collapse
Affiliation(s)
- Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Xu Z, Li H, Ma M. Accurate estimation of dynamical quantities for nonequilibrium nanoscale systems. Phys Rev E 2023; 107:014124. [PMID: 36797886 DOI: 10.1103/physreve.107.014124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Fluctuations of dynamical quantities are fundamental and inevitable. For the booming research in nanotechnology, huge relative fluctuation comes with the reduction of system size, leading to large uncertainty for the estimates of dynamical quantities. Thus, increasing statistical efficiency, i.e., reducing the number of samples required to achieve a given accuracy, is of great significance for accurate estimation. Here we propose a theory as a fundamental solution for such problem by constructing auxiliary path for each real path. The states on auxiliary paths constitute canonical ensemble and share the same macroscopic properties (NVT) with the initial states of the real path. By implementing the theory in molecular dynamics simulations, we obtain a nanoscale Couette flow field with an accuracy of 0.2μm/s with relative standard error <0.1. The required number of samples is reduced by 12 orders compared to conventional method. The predicted thermolubric behavior of water sliding on a self-assembled surface is directly validated by experiment under the same velocity. This theory only assumes the system is initially in thermal equilibrium, then driven from that equilibrium by an external perturbation. It could serve as a general approach for extracting the accurate estimate of dynamical quantities from large fluctuations to provide insights on atomic level under experimental conditions, and benefit the studies on mass transport through (biological) nanochannels and fluid film lubrication of nanometer thickness.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Han Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Ming Ma
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Blaber S, Louwerse MD, Sivak DA. Steps minimize dissipation in rapidly driven stochastic systems. Phys Rev E 2021; 104:L022101. [PMID: 34525515 DOI: 10.1103/physreve.104.l022101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 02/04/2023]
Abstract
Micro- and nanoscale systems driven by rapid changes in control parameters (control protocols) dissipate significant energy. In the fast-protocol limit, we find that protocols that minimize dissipation at fixed duration are universally given by a two-step process, jumping to and from a point that balances jump size with fast relaxation. Jump protocols could be exploited by molecular machines or thermodynamic computing to improve energetic efficiency, and implemented in nonequilibrium free-energy estimation to improve accuracy.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Miranda D Louwerse
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
5
|
Campo M, Speck T. Dynamical coexistence in moderately polydisperse hard-sphere glasses. J Chem Phys 2020; 152:014501. [DOI: 10.1063/1.5134842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matteo Campo
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
6
|
Nguyen TH, Ngo V, Castro Zerba JP, Noskov S, Minh DDL. Nonequilibrium path-ensemble averages for symmetric protocols. J Chem Phys 2019; 151:194103. [DOI: 10.1063/1.5121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van Ngo
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - João Paulo Castro Zerba
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
- Institute of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Sergei Noskov
- SYN: Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
7
|
Swenson DWH, Prinz JH, Noe F, Chodera JD, Bolhuis PG. OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics. J Chem Theory Comput 2018; 15:813-836. [PMID: 30336030 PMCID: PMC6374749 DOI: 10.1021/acs.jctc.8b00626] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Transition
path sampling techniques allow molecular dynamics simulations of complex
systems to focus on rare dynamical events, providing
insight into mechanisms and the ability to calculate rates inaccessible
by ordinary dynamics simulations. While path sampling algorithms are
conceptually as simple as importance sampling Monte Carlo, the technical
complexity of their implementation has kept these techniques out of
reach of the broad community. Here, we introduce an easy-to-use Python
framework called OpenPathSampling (OPS) that facilitates path sampling
for (bio)molecular systems with minimal effort and yet is still extensible.
Interfaces to OpenMM and an internal dynamics engine for simple models
are provided in the initial release, but new molecular simulation
packages can easily be added. Multiple ready-to-use transition path
sampling methodologies are implemented, including standard transition
path sampling (TPS) between reactant and product states and transition
interface sampling (TIS) and its replica exchange variant (RETIS),
as well as recent multistate and multiset extensions of transition
interface sampling (MSTIS, MISTIS). In addition, tools are provided
to facilitate the implementation of new path sampling schemes built
on basic path sampling components. In this paper, we give an overview
of the design of this framework and illustrate the simplicity of applying
the available path sampling algorithms to a variety of benchmark problems.
Collapse
Affiliation(s)
- David W H Swenson
- van 't Hoff Institute for Molecular Sciences , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands.,Computational and Systems Biology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Jan-Hendrik Prinz
- Computational and Systems Biology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Mathematics and Computer Science, Arnimallee 6 , Freie Universität Berlin , 14195 Berlin , Germany
| | - Frank Noe
- Department of Mathematics and Computer Science, Arnimallee 6 , Freie Universität Berlin , 14195 Berlin , Germany
| | - John D Chodera
- Computational and Systems Biology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| |
Collapse
|
8
|
Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L, Rodriguez D. On the accurate estimation of free energies using the jarzynski equality. J Comput Chem 2018; 40:688-696. [DOI: 10.1002/jcc.25754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Mehrnoosh Arrar
- Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Fernando Martín Boubeta
- Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Maria Eugenia Szretter
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Mariela Sued
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Daniela Rodriguez
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
9
|
Donati L, Keller BG. Girsanov reweighting for metadynamics simulations. J Chem Phys 2018; 149:072335. [DOI: 10.1063/1.5027728] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Luca Donati
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| |
Collapse
|
10
|
Affiliation(s)
| | - Rosalind J. Allen
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Turci F, Speck T, Royall CP. Structural-dynamical transition in the Wahnström mixture. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:54. [PMID: 29700690 DOI: 10.1140/epje/i2018-11662-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
In trajectory space, dynamical heterogeneities in glass-forming liquids correspond to the emergence of a dynamical phase transition between an active phase poor in local structure and an inactive phase which is rich in local structure. We support this scenario with the study of a model additive mixture of Lennard-Jones particles, quantifying how the choice of the relevant structural and dynamical observable affects the transition in trajectory space. We find that the low mobility, structure-rich phase is dominated by icosahedral order. Applying a non-equilibrium rheological protocol, we connect local order to the emergence of mechanical rigidity.
Collapse
Affiliation(s)
- Francesco Turci
- H.H. Wills Physics Laboratory, University of Bristol, BS8 1TL, Bristol, UK.
- Centre for Nanoscience and Quantum Information, BS8 1FD, Bristol, UK.
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128, Mainz, Germany
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, University of Bristol, BS8 1TL, Bristol, UK
- Centre for Nanoscience and Quantum Information, BS8 1FD, Bristol, UK
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| |
Collapse
|
12
|
Affiliation(s)
- Brooke E. Husic
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Zhang BW, Deng N, Tan Z, Levy RM. Stratified UWHAM and Its Stochastic Approximation for Multicanonical Simulations Which Are Far from Equilibrium. J Chem Theory Comput 2017; 13:4660-4674. [PMID: 28902500 PMCID: PMC5897113 DOI: 10.1021/acs.jctc.7b00651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a new analysis tool called Stratified unbinned Weighted Histogram Analysis Method (Stratified-UWHAM), which can be used to compute free energies and expectations from a multicanonical ensemble when a subset of the parallel simulations is far from being equilibrated because of barriers between free energy basins which are only rarely (or never) crossed at some states. The Stratified-UWHAM equations can be obtained in the form of UWHAM equations but with an expanded set of states. We also provide a stochastic solver, Stratified RE-SWHAM, for Stratified-UWHAM to remove its computational bottleneck. Stratified-UWHAM and Stratified RE-SWHAM are applied to study three test topics: the free energy landscape of alanine dipeptide, the binding affinity of a host-guest binding complex, and path sampling for a two-dimensional double well potential. The examples show that when some of the parallel simulations are only locally equilibrated, the estimates of free energies and equilibrium distributions provided by the conventional UWHAM (or MBAR) solutions exhibit considerable biases, but the estimates provided by Stratified-UWHAM and Stratified RE-SWHAM agree with the benchmark very well. Lastly, we discuss features of the Stratified-UWHAM approach which is based on coarse-graining in relation to two other maximum likelihood-based methods which were proposed recently, that also coarse-grain the multicanonical data.
Collapse
|
14
|
Pinchaipat R, Campo M, Turci F, Hallett JE, Speck T, Royall CP. Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space. PHYSICAL REVIEW LETTERS 2017; 119:028004. [PMID: 28753337 DOI: 10.1103/physrevlett.119.028004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 06/07/2023]
Abstract
Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.
Collapse
Affiliation(s)
- Rattachai Pinchaipat
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - Matteo Campo
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Francesco Turci
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - James E Hallett
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Donati L, Hartmann C, Keller BG. Girsanov reweighting for path ensembles and Markov state models. J Chem Phys 2017; 146:244112. [DOI: 10.1063/1.4989474] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- L. Donati
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - C. Hartmann
- Institute of Mathematics, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, D-03046 Cottbus, Germany
| | - B. G. Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| |
Collapse
|
16
|
Thiede EH, Van Koten B, Weare J, Dinner AR. Eigenvector method for umbrella sampling enables error analysis. J Chem Phys 2016; 145:084115. [PMID: 27586912 PMCID: PMC5010559 DOI: 10.1063/1.4960649] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/28/2016] [Indexed: 11/14/2022] Open
Abstract
Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence.
Collapse
Affiliation(s)
- Erik H Thiede
- Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Brian Van Koten
- Department of Statistics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan Weare
- Department of Statistics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R Dinner
- Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Abstract
We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model.
Collapse
|
18
|
Moradi M, Sagui C, Roland C. Investigating rare events with nonequilibrium work measurements. II. Transition and reaction rates. J Chem Phys 2015; 140:034115. [PMID: 25669371 DOI: 10.1063/1.4861056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. The formalism is based on combining Transition Path Theory with the results of nonequilibrium work relations, and shows that the equilibrium and nonequilibrium transition rates are in fact related. Aside from its fundamental importance, this allows for the calculation of relative equilibrium reaction rates with driven nonequilibrium simulations such as Steered Molecular Dynamics. The workings of the formalism are illustrated with a few typical numerical examples.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
19
|
Wu H, Mey ASJS, Rosta E, Noé F. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states. J Chem Phys 2014; 141:214106. [DOI: 10.1063/1.4902240] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Wu
- Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany
| | | | - Edina Rosta
- King's College London, London, SE1 1DB, United Kingdom
| | - Frank Noé
- Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
20
|
Comer J, Gumbart JC, Hénin J, Lelièvre T, Pohorille A, Chipot C. The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J Phys Chem B 2014; 119:1129-51. [PMID: 25247823 PMCID: PMC4306294 DOI: 10.1021/jp506633n] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
In the host of numerical schemes
devised to calculate free energy
differences by way of geometric transformations, the adaptive biasing
force algorithm has emerged as a promising route to map complex free-energy
landscapes. It relies upon the simple concept that as a simulation
progresses, a continuously updated biasing force is added to the equations
of motion, such that in the long-time limit it yields a Hamiltonian
devoid of an average force acting along the transition coordinate
of interest. This means that sampling proceeds uniformly on a flat
free-energy surface, thus providing reliable free-energy estimates.
Much of the appeal of the algorithm to the practitioner is in its
physically intuitive underlying ideas and the absence of any requirements
for prior knowledge about free-energy landscapes. Since its inception
in 2001, the adaptive biasing force scheme has been the subject of
considerable attention, from in-depth mathematical analysis of convergence
properties to novel developments and extensions. The method has also
been successfully applied to many challenging problems in chemistry
and biology. In this contribution, the method is presented in a comprehensive,
self-contained fashion, discussing with a critical eye its properties,
applicability, and inherent limitations, as well as introducing novel
extensions. Through free-energy calculations of prototypical molecular
systems, many methodological aspects are examined, from stratification
strategies to overcoming the so-called hidden barriers in orthogonal
space, relevant not only to the adaptive biasing force algorithm but
also to other importance-sampling schemes. On the basis of the discussions
in this paper, a number of good practices for improving the efficiency
and reliability of the computed free-energy differences are proposed.
Collapse
Affiliation(s)
- Jeffrey Comer
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche CNRS n°7565, Université de Lorraine , B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Sivak DA, Chodera JD, Crooks G. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems. J Phys Chem B 2014; 118:6466-74. [PMID: 24555448 PMCID: PMC4065221 DOI: 10.1021/jp411770f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/20/2014] [Indexed: 11/30/2022]
Abstract
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Collapse
Affiliation(s)
- David A. Sivak
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - John D. Chodera
- Computational
Biology Program, Memorial Sloan-Kettering
Cancer Center, New York, New York 10065, United
States
| | - Gavin
E. Crooks
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Zhang Z, Wu T, Wang Q, Pan H, Tang R. Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski's equality. J Chem Phys 2014; 140:034706. [DOI: 10.1063/1.4858428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Lee TS, Radak BK, Huang M, Wong KY, York DM. Roadmaps through free energy landscapes calculated using the multi-dimensional vFEP approach. J Chem Theory Comput 2013; 10:24-34. [PMID: 24505217 DOI: 10.1021/ct400691f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The variational free energy profile (vFEP) method is extended to two dimensions and tested with molecular simulation applications. The proposed 2D-vFEP approach effectively addresses the two major obstacles to constructing free energy profiles from simulation data using traditional methods: the need for overlap in the re-weighting procedure and the problem of data representation. This is especially evident as these problems are shown to be more severe in two dimensions. The vFEP method is demonstrated to be highly robust and able to provide stable, analytic free energy profiles with only a paucity of sampled data. The analytic profiles can be analyzed with conventional search methods to easily identify stationary points (e.g. minima and first-order saddle points) as well as the pathways that connect these points. These "roadmaps" through the free energy surface are useful not only as a post-processing tool to characterize mechanisms, but can also serve as a basis from which to direct more focused "on-the-fly" sampling or adaptive force biasing. Test cases demonstrate that 2D-vFEP outperforms other methods in terms of the amount and sparsity of the data needed to construct stable, converged analytic free energy profiles. In a classic test case, the two dimensional free energy profile of the backbone torsion angles of alanine dipeptide, 2D-vFEP needs less than 1% of the original data set to reach a sampling accuracy of 0.5 kcal/mol in free energy shifts between windows. A new software tool for performing one and two dimensional vFEP calculations is herein described and made publicly available.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, Scientific Computation Program, University of Minnesota, Minneapolis, MN 55455, USA, and Department of Physics, High Performance Cluster Computing Centre, and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, Scientific Computation Program, University of Minnesota, Minneapolis, MN 55455, USA, and Department of Physics, High Performance Cluster Computing Centre, and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ming Huang
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, Scientific Computation Program, University of Minnesota, Minneapolis, MN 55455, USA, and Department of Physics, High Performance Cluster Computing Centre, and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Kin-Yiu Wong
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, Scientific Computation Program, University of Minnesota, Minneapolis, MN 55455, USA, and Department of Physics, High Performance Cluster Computing Centre, and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, Scientific Computation Program, University of Minnesota, Minneapolis, MN 55455, USA, and Department of Physics, High Performance Cluster Computing Centre, and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
24
|
Lannon H, Haghpanah JS, Montclare JK, Vanden-Eijnden E, Brujic J. Force-clamp experiments reveal the free-energy profile and diffusion coefficient of the collapse of protein molecules. PHYSICAL REVIEW LETTERS 2013; 110:128301. [PMID: 25166851 DOI: 10.1103/physrevlett.110.128301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Indexed: 06/03/2023]
Abstract
We present force-clamp data on the collapse of ubiquitin polyproteins from a highly extended state to the folded length, in response to a quench in the force from 110 pN to 5 or 10 pN. Using a recent method for free-energy reconstruction from the observed nonequilibrium trajectories, we find that their statistics is captured by simple diffusion along the end-to-end length. The estimated diffusion coefficient of ∼ 100 nm(2) s(-1) is significantly slower than expected from viscous effects alone, possibly because of the internal degrees of freedom of the protein. The free-energy profiles give validity to a physical model in which the multiple protein domains collapse all at once and the role of the force is approximately captured by the Bell model.
Collapse
Affiliation(s)
- H Lannon
- Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| | - J S Haghpanah
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, USA
| | - J K Montclare
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, USA
| | - E Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - J Brujic
- Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| |
Collapse
|
25
|
Lee TS, Radak BK, Pabis A, York DM. A New Maximum Likelihood Approach for Free Energy Profile Construction from Molecular Simulations. J Chem Theory Comput 2012; 9:153-164. [PMID: 23457427 DOI: 10.1021/ct300703z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel variational method for construction of free energy profiles from molecular simulation data is presented. The variational free energy profile (VFEP) method uses the maximum likelihood principle applied to the global free energy profile based on the entire set of simulation data (e.g from multiple biased simulations) that spans the free energy surface. The new method addresses common obstacles in two major problems usually observed in traditional methods for estimating free energy surfaces: the need for overlap in the re-weighting procedure and the problem of data representation. Test cases demonstrate that VFEP outperforms other methods in terms of the amount and sparsity of the data needed to construct the overall free energy profiles. For typical chemical reactions, only ~5 windows and ~20-35 independent data points per window are sufficient to obtain an overall qualitatively correct free energy profile with sampling errors an order of magnitude smaller than the free energy barrier. The proposed approach thus provides a feasible mechanism to quickly construct the global free energy profile and identify free energy barriers and basins in free energy simulations via a robust, variational procedure that determines an analytic representation of the free energy profile without the requirement of numerically unstable histograms or binning procedures. It can serve as a new framework for biased simulations and is suitable to be used together with other methods to tackle with the free energy estimation problem.
Collapse
Affiliation(s)
- Tai-Sung Lee
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
26
|
Athènes M, Marinica MC, Jourdan T. Estimating time-correlation functions by sampling and unbiasing dynamically activated events. J Chem Phys 2012. [PMID: 23181294 DOI: 10.1063/1.4766458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transition path sampling is a rare-event method that estimates state-to-state time-correlation functions in many-body systems from samples of short trajectories. In this framework, it is proposed to bias the importance function using the lowest Jacobian eigenvalue moduli along the dynamical trajectory. A lowest eigenvalue modulus is related to the lowest eigenvalue of the Hessian matrix and is evaluated here using the Lanczos algorithm as in activation-relaxation techniques. This results in favoring the sampling of activated trajectories and enhancing the occurrence of the rare reactive trajectories of interest, those corresponding to transitions between locally stable states. Estimating the time-correlation functions involves unbiasing the sample of simulated trajectories which is done using the multi-state Bennett acceptance ratio (MBAR) method. To assess the performance of our procedure, we compute the time-correlation function associated with the migration of a vacancy in α-iron. The derivative of the estimated time-correlation function yields a migration rate in agreement with the one given by transition state theory. Besides, we show that the information relative to rejected trajectories can be recycled within MBAR, resulting in a substantial speed-up. Unlike original transition path-sampling, our approach does not require computing the reversible work to confine the trajectory endpoints to a reactive state.
Collapse
Affiliation(s)
- Manuel Athènes
- CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
27
|
Speck T, Malins A, Royall CP. First-order phase transition in a model glass former: coupling of local structure and dynamics. PHYSICAL REVIEW LETTERS 2012; 109:195703. [PMID: 23215402 DOI: 10.1103/physrevlett.109.195703] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 05/13/2023]
Abstract
Recently, numerical evidence for a dynamical first-order phase transition in trajectory space [L.O. Hedges et al., Science 323, 1309 (2009)] has been found. In a model glass former in which clusters of 11 particles form upon cooling, we find that the transition has both dynamical and structural character. It occurs between an active phase with a high fraction of mobile and low fraction of cluster particles, and an inactive phase with few mobile but many cluster particles. The transition can be driven both dynamically and structurally with a chemical potential, showing that local order forms a mechanism for dynamical arrest.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
28
|
Speck T, Chandler D. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers. J Chem Phys 2012; 136:184509. [PMID: 22583302 DOI: 10.1063/1.4712026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent progress has demonstrated that trajectory space for both kinetically constrained lattice models and atomistic models can be partitioned into a liquid-like and an inactive basin with a non-equilibrium phase transition separating these behaviors. Recent work has also established that excitations in atomistic models have statistics and dynamics like those in a specific class of kinetically constrained models. But it has not been known whether the non-equilibrium phase transitions occurring in the two classes of models have similar origins. Here, we show that the origin is indeed similar. In particular, we show that the number of excitations identified in an atomistic model serves as the order parameter for the inactive-active phase transition for that model. In this way, we show that the mechanism by which excitations are correlated in an atomistic model - by dynamical facilitation - is the mechanism from which the active-inactive phase transition emerges. We study properties of the inactive phase and show that it is amorphous lacking long-range order. We also discuss the choice of dynamical order parameters.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
29
|
Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation. Proc Natl Acad Sci U S A 2011; 108:E1009-18. [PMID: 22025687 DOI: 10.1073/pnas.1106094108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
Collapse
|
30
|
Rogers DM, Beck TL, Rempe SB. An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics. JOURNAL OF STATISTICAL PHYSICS 2011; 145:385-409. [PMID: 22966210 PMCID: PMC3436205 DOI: 10.1007/s10955-011-0358-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium 'process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.
Collapse
Affiliation(s)
- David M. Rogers
- Center for Biological and Materials Sciences, MS 0895, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Thomas L. Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Susan B. Rempe
- Center for Biological and Materials Sciences, MS 0895, Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
31
|
Chodera JD, Pande VS. Splitting probabilities as a test of reaction coordinate choice in single-molecule experiments. PHYSICAL REVIEW LETTERS 2011; 107:098102. [PMID: 21929272 PMCID: PMC4731355 DOI: 10.1103/physrevlett.107.098102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 05/31/2023]
Abstract
To explain the observed dynamics in equilibrium single-molecule measurements of biomolecules, the experimental observable is often chosen as a putative reaction coordinate along which kinetic behavior is presumed to be governed by diffusive dynamics. Here, we invoke the splitting probability as a test of the suitability of such a proposed reaction coordinate. Comparison of the observed splitting probability with that computed from the kinetic model provides a simple test to reject poor reaction coordinates. We demonstrate this test for a force spectroscopy measurement of a DNA hairpin.
Collapse
Affiliation(s)
- John D. Chodera
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
32
|
Chodera JD, Swope WC, Noé F, Prinz JH, Shirts MR, Pande VS. Dynamical reweighting: improved estimates of dynamical properties from simulations at multiple temperatures. J Chem Phys 2011; 134:244107. [PMID: 21721612 PMCID: PMC3143679 DOI: 10.1063/1.3592152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/19/2011] [Indexed: 11/14/2022] Open
Abstract
Dynamical averages based on functionals of dynamical trajectories, such as time-correlation functions, play an important role in determining kinetic or transport properties of matter. At temperatures of interest, the expectations of these quantities are often dominated by contributions from rare events, making the precise calculation of these quantities by molecular dynamics simulation difficult. Here, we present a reweighting method for combining simulations from multiple temperatures (or from simulated or parallel tempering simulations) to compute an optimal estimate of the dynamical properties at the temperature of interest without the need to invoke an approximate kinetic model (such as the Arrhenius law). Continuous and differentiable estimates of these expectations at any temperature in the sampled range can also be computed, along with an assessment of the associated statistical uncertainty. For rare events, aggregating data from multiple temperatures can produce an estimate with the desired precision at greatly reduced computational cost compared with simulations conducted at a single temperature. Here, we describe use of the method for the canonical (NVT) ensemble using four common models of dynamics (canonical distribution of Hamiltonian trajectories, Andersen thermostatting, Langevin, and overdamped Langevin or Brownian dynamics), but it can be applied to any thermodynamic ensemble provided the ratio of path probabilities at different temperatures can be computed. To illustrate the method, we compute a time-correlation function for solvated terminally-blocked alanine peptide across a range of temperatures using trajectories harvested using a modified parallel tempering protocol.
Collapse
Affiliation(s)
- John D Chodera
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Minh DDL, Chodera JD. Estimating equilibrium ensemble averages using multiple time slices from driven nonequilibrium processes: theory and application to free energies, moments, and thermodynamic length in single-molecule pulling experiments. J Chem Phys 2011; 134:024111. [PMID: 21241084 DOI: 10.1063/1.3516517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently discovered identities in statistical mechanics have enabled the calculation of equilibrium ensemble averages from realizations of driven nonequilibrium processes, including single-molecule pulling experiments and analogous computer simulations. Challenges in collecting large data sets motivate the pursuit of efficient statistical estimators that maximize use of available information. Along these lines, Hummer and Szabo developed an estimator that combines data from multiple time slices along a driven nonequilibrium process to compute the potential of mean force. Here, we generalize their approach, pooling information from multiple time slices to estimate arbitrary equilibrium expectations. Our expression may be combined with estimators of path-ensemble averages, including existing optimal estimators that use data collected by unidirectional and bidirectional protocols. We demonstrate the estimator by calculating free energies, moments of the polymer extension, the thermodynamic metric tensor, and the thermodynamic length in a model single-molecule pulling experiment. Compared to estimators that only use individual time slices, our multiple time-slice estimators yield substantially smoother estimates and achieve lower variance for higher-order moments.
Collapse
Affiliation(s)
- David D L Minh
- Biosciences Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
| | | |
Collapse
|
34
|
Minh DDL, Vaikuntanathan S. Density-dependent analysis of nonequilibrium paths improves free energy estimates II. A Feynman–Kac formalism. J Chem Phys 2011; 134:034117. [DOI: 10.1063/1.3541152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Pohorille A, Jarzynski C, Chipot C. Good practices in free-energy calculations. J Phys Chem B 2010; 114:10235-53. [PMID: 20701361 DOI: 10.1021/jp102971x] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in a wide range of research areas. Yet, the reliability of these calculations can often be improved significantly if a number of precepts, or good practices, are followed. Although the theory upon which these good practices rely has largely been known for many years, it is often overlooked or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. In this contribution, the current best practices for carrying out free-energy calculations using free energy perturbation and nonequilibrium work methods are discussed, demonstrating that at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. Monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway, and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision.
Collapse
Affiliation(s)
- Andrew Pohorille
- NASA Ames Research Center, Exobiology Branch, Mail Stop 239-4, Moffett Field, California, 94035-1000, USA
| | | | | |
Collapse
|
36
|
Rogal J, Lechner W, Juraszek J, Ensing B, Bolhuis PG. The reweighted path ensemble. J Chem Phys 2010; 133:174109. [DOI: 10.1063/1.3491817] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Calvo F. Free-energy landscapes from adaptively biased methods: application to quantum systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:046703. [PMID: 21230408 DOI: 10.1103/physreve.82.046703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/25/2010] [Indexed: 05/30/2023]
Abstract
Several parallel adaptive biasing methods are applied to the calculation of free-energy pathways along reaction coordinates, choosing as a difficult example the double-funnel landscape of the 38-atom Lennard-Jones cluster. In the case of classical statistics, the Wang-Landau and adaptively biased molecular-dynamics (ABMD) methods are both found efficient if multiple walkers and replication and deletion schemes are used. An extension of the ABMD technique to quantum systems, implemented through the path-integral MD framework, is presented and tested on Ne38 against the quantum superposition method.
Collapse
Affiliation(s)
- F Calvo
- LASIM, Université de Lyon, CNRS UMR 5579, 43 Bd du 11 Novembre 1918, F69622 Villeurbanne Cedex, France.
| |
Collapse
|
38
|
Hahn AM, Then H. Measuring the convergence of Monte Carlo free-energy calculations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041117. [PMID: 20481687 DOI: 10.1103/physreve.81.041117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/24/2010] [Indexed: 05/29/2023]
Abstract
The nonequilibrium work fluctuation theorem provides the way for calculations of (equilibrium) free-energy based on work measurements of nonequilibrium, finite-time processes, and their reversed counterparts by applying Bennett's acceptance ratio method. A nice property of this method is that each free-energy estimate readily yields an estimate of the asymptotic mean square error. Assuming convergence, it is easy to specify the uncertainty of the results. However, sample sizes have often to be balanced with respect to experimental or computational limitations and the question arises whether available samples of work values are sufficiently large in order to ensure convergence. Here, we propose a convergence measure for the two-sided free-energy estimator and characterize some of its properties, explain how it works, and test its statistical behavior. In total, we derive a convergence criterion for Bennett's acceptance ratio method.
Collapse
Affiliation(s)
- Aljoscha M Hahn
- Institut für Physik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany
| | | |
Collapse
|
39
|
Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T. Current status of the AMOEBA polarizable force field. J Phys Chem B 2010; 114:2549-64. [PMID: 20136072 PMCID: PMC2918242 DOI: 10.1021/jp910674d] [Citation(s) in RCA: 970] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly available example of this next generation of theoretical model, but to date, it has only received relatively limited validation, which we address here. We show that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions. State of the art electronic structure calculations reveal generally very good agreement with AMOEBA for demanding problems such as relative conformational energies of the alanine tetrapeptide and isomers of water sulfate complexes. AMOEBA is shown to be especially successful on protein-ligand binding and computational X-ray crystallography where polarization and accurate electrostatics are critical.
Collapse
Affiliation(s)
- Jay W Ponder
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|