1
|
Orts F, Ortega G, Garzón EM, Fuchs M, Puertas AM. Dynamics and friction of a large colloidal particle in a bath of hard spheres: Langevin dynamics simulations and hydrodynamic description. Phys Rev E 2020; 101:052607. [PMID: 32575230 DOI: 10.1103/physreve.101.052607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The analysis of the dynamics of tracer particles in a complex bath can provide valuable information about the microscopic behavior of the bath. In this work, we study the dynamics of a forced tracer in a colloidal bath by means of Langevin dynamics simulations and a theory model within continuum mechanics. In the simulations, the bath is comprised of quasihard spheres with a volume fraction of 50% immersed in a featureless quiescent solvent, and the tracer is pulled with a constant small force (within the linear regime). The theoretical analysis is based on the Navier-Stokes equation, where a term proportional to the velocity arises from coarse-graining the friction of the colloidal particles with the solvent. As a result, the final equation is similar to the Brinkman model, although the interpretation is different. A length scale appears in the model, k_{0}^{-1}, where the transverse momentum transport crosses over to friction with the solvent. The effective friction coefficient experienced by the tracer grows with the tracer size faster than the prediction from Stokes's law. Additionally, the velocity profiles in the bath decay faster than in a Newtonian fluid. The comparison between simulations and theory points to a boundary condition of effective partial slip at the tracer surface. We also study the fluctuations in the tracer position, showing that it reaches diffusion at long times, with a subdiffusive regime at intermediate times. The diffusion coefficient, obtained from the long-time slope of the mean-squared displacement, fulfills the Stokes-Einstein relation with the friction coefficient calculated from the steady tracer velocity, confirming the validity of the linear response formalism.
Collapse
Affiliation(s)
- F Orts
- Departamento de Informática, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | - G Ortega
- Departamento de Informática, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | - E M Garzón
- Departamento de Informática, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | - M Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - A M Puertas
- Departamento de Física Aplicada, Universidad de Almería, 04120 Almería, Spain
| |
Collapse
|
2
|
Karim M, Indei T, Schieber JD, Khare R. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations. Phys Rev E 2016; 93:012501. [PMID: 26871112 DOI: 10.1103/physreve.93.012501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/07/2022]
Abstract
Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012)PLEEE81539-375510.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length d_{T}, in addition to those length scales already relevant: monomer bead size d, probe size R, polymer radius of gyration R_{g}, simulation box size L, shear wave penetration length Δ, and wave period Λ. Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d≳Λ; medium inertia is important and IGSER is required when R≳Λ; and the probe should not experience hydrodynamic interaction with its periodic images, L≳Δ. These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as M_{w}^{3}. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness L_{S} of the shell around the particle that contains the added mass, L_{S}>d. We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Mir Karim
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409, USA
| | - Tsutomu Indei
- Center for Molecular Study of Condensed Soft Matter, and Department of Chemical and Biological Engineering, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, Illinois 60616, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, and Department of Chemical and Biological Engineering, Illinois Institute of Technology, 3440 S. Dearborn Street, Chicago, Illinois 60616, USA.,Department of Physics, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, USA.,Department of Applied Mathematics, Illinois Institute of Technology, 10 West 32nd Street, Chicago, Illinois 60616, USA
| | - Rajesh Khare
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409, USA
| |
Collapse
|
3
|
Domínguez-García P, Cardinaux F, Bertseva E, Forró L, Scheffold F, Jeney S. Accounting for inertia effects to access the high-frequency microrheology of viscoelastic fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:060301. [PMID: 25615034 DOI: 10.1103/physreve.90.060301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 06/04/2023]
Abstract
We study the Brownian motion of microbeads immersed in water and in a viscoelastic wormlike micelles solution by optical trapping interferometry and diffusing wave spectroscopy. Through the mean-square displacement obtained from both techniques, we deduce the mechanical properties of the fluids at high frequencies by explicitly accounting for inertia effects of the particle and the surrounding fluid at short time scales. For wormlike micelle solutions, we recover the 3/4 scaling exponent for the loss modulus over two decades in frequency as predicted by the theory for semiflexible polymers.
Collapse
Affiliation(s)
- P Domínguez-García
- Departamento de Física de Materiales, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain
| | - Frédéric Cardinaux
- Department of Physics, University of Fribourg, 1700 Fribourg Perolles, Switzerland and LS Instruments AG, Passage du Cardinal 1, CH-1700 Fribourg, Switzerland
| | - Elena Bertseva
- Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - László Forró
- Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Frank Scheffold
- Department of Physics, University of Fribourg, 1700 Fribourg Perolles, Switzerland
| | - Sylvia Jeney
- Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Kuhnhold A, Paul W. Passive one-particle microrheology of an unentangled polymer melt studied by molecular dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022602. [PMID: 25215751 DOI: 10.1103/physreve.90.022602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 06/03/2023]
Abstract
We present a molecular dynamics simulation study of the possibility of performing a microrheological analysis of a polymer melt by following the Brownian motion of a dispersed nanoparticle. We study the influence of the size of the nanoparticle, taken to be comparable to the radius of gyration of the chains, and of the strength of the interaction between the nanoparticle and the repeat units of the polymer chains. The influence of the presence of the nanoparticle on the melt mechanical behavior is analyzed, and the importance of effects of different levels of hydrodynamic analysis on the frequency-dependent dynamic shear modulus derived from the particle motion is worked out.
Collapse
Affiliation(s)
- A Kuhnhold
- Institut für Physik, Martin-Luther-Universität, Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - W Paul
- Institut für Physik, Martin-Luther-Universität, Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
5
|
Puertas AM, Voigtmann T. Microrheology of colloidal systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:243101. [PMID: 24848328 DOI: 10.1088/0953-8984/26/24/243101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes-Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The nonlinear probe-friction coefficient is calculated from the tracer's position correlation function. Computer simulations show qualitative agreement with the theory, but also some unexpected features, such as superdiffusive motion of the probe related to the breaking of nearest-neighbor cages. We conclude with some perspectives and future directions of theoretical models of microrheology.
Collapse
Affiliation(s)
- A M Puertas
- Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, 04120 Almeria, Spain
| | | |
Collapse
|
6
|
Particle laden fluid interfaces: dynamics and interfacial rheology. Adv Colloid Interface Sci 2014; 206:303-19. [PMID: 24200090 DOI: 10.1016/j.cis.2013.10.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/30/2022]
Abstract
We review the dynamics of particle laden interfaces, both particle monolayers and particle+surfactant monolayers. We also discuss the use of the Brownian motion of microparticles trapped at fluid interfaces for measuring the shear rheology of surfactant and polymer monolayers. We describe the basic concepts of interfacial rheology and the different experimental methods for measuring both dilational and shear surface complex moduli over a broad range of frequencies, with emphasis in the micro-rheology methods. In the case of particles trapped at interfaces the calculation of the diffusion coefficient from the Brownian trajectories of the particles is calculated as a function of particle surface concentration. We describe in detail the calculation in the case of subdiffusive particle dynamics. A comprehensive review of dilational and shear rheology of particle monolayers and particle+surfactant monolayers is presented. Finally the advantages and current open problems of the use of the Brownian motion of microparticles for calculating the shear complex modulus of monolayers are described in detail.
Collapse
|
7
|
Felderhof BU. Estimating the viscoelastic moduli of complex fluids from observation of Brownian motion of a particle confined to a harmonic trap. J Chem Phys 2011; 134:204910. [PMID: 21639480 DOI: 10.1063/1.3596271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A procedure is proposed to estimate the viscoelastic properties of a complex fluid from the behavior of the velocity autocorrelation function of a suspended Brownian particle, trapped in a harmonic potential. The procedure is tested for a model complex fluid with a given frequency-dependent shear viscosity. The analysis shows that the procedure can provide a rather accurate prediction of the viscoelastic properties of the fluid on the basis of experimental data on the velocity autocorrelation function of the trapped Brownian particle in a limited range of time.
Collapse
Affiliation(s)
- B U Felderhof
- Institut für Theoretische Physik A, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany.
| |
Collapse
|
8
|
Ortega F, Ritacco H, Rubio RG. Interfacial microrheology: Particle tracking and related techniques. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|