1
|
Ončák M, Siu C, van der Linde C, Kit Tang W, Beyer MK. Thermally Activated vs. Photochemical Hydrogen Evolution Reactions-A Tale of Three Metals. Chemistry 2023; 29:e202203590. [PMID: 36729049 PMCID: PMC10962578 DOI: 10.1002/chem.202203590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
Molecular processes behind hydrogen evolution reactions can be quite complex. In macroscopic electrochemical cells, it is extremely difficult to elucidate and understand their mechanism. Gas phase models, consisting of a metal ion and a small number of water molecules, provide unique opportunities to understand the reaction pathways in great detail. Hydrogen evolution in clusters consisting of a singly charged metal ion and one to on the order of 50 water molecules has been studied extensively for magnesium, aluminum and vanadium. Such clusters with around 10-20 water molecules are known to eliminate atomic or molecular hydrogen upon mild activation by room temperature black-body radiation. Irradiation with ultraviolet light, by contrast, enables hydrogen evolution already with a single water molecule. Here, we analyze and compare the reaction mechanisms for hydrogen evolution on the ground state as well as excited state potential energy surfaces. Five distinct mechanisms for evolution of atomic or molecular hydrogen are identified and characterized.
Collapse
Affiliation(s)
- Milan Ončák
- Universität InnsbruckInstitut für Ionenphysik und Angewandte PhysikTechnikerstraße 256020InnsbruckAustria
| | - Chi‐Kit Siu
- Department of ChemistryCity University of Hong Kong83 Tat Chee Avenue, Kowloon TongHong Kong SARP. R. China
| | - Christian van der Linde
- Universität InnsbruckInstitut für Ionenphysik und Angewandte PhysikTechnikerstraße 256020InnsbruckAustria
| | - Wai Kit Tang
- Institute of Research Management and Services (IPPP) Research and Innovation Management ComplexUniversity of MalayaKuala Lumpur50603Malaysia
| | - Martin K. Beyer
- Universität InnsbruckInstitut für Ionenphysik und Angewandte PhysikTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
2
|
van der Linde C, Ončák M, Cunningham EM, Tang WK, Siu CK, Beyer MK. Surface or Internal Hydration - Does It Really Matter? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:337-354. [PMID: 36744598 PMCID: PMC9983018 DOI: 10.1021/jasms.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The precise location of an ion or electron, whether it is internally solvated or residing on the surface of a water cluster, remains an intriguing question. Subtle differences in the hydrogen bonding network may lead to a preference for one or the other. Here we discuss spectroscopic probes of the structure of gas-phase hydrated ions in combination with quantum chemistry, as well as H/D exchange as a means of structure elucidation. With the help of nanocalorimetry, we look for thermochemical signatures of surface vs internal solvation. Examples of strongly size-dependent reactivity are reviewed which illustrate the influence of surface vs internal solvation on unimolecular rearrangements of the cluster, as well as on the rate and product distribution of ion-molecule reactions.
Collapse
Affiliation(s)
- Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Ethan M. Cunningham
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Wai Kit Tang
- Institute
of Research Management and Services (IPPP), Research and Innovation
Management Complex, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Chi-Kit Siu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, PR China
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| |
Collapse
|
3
|
Abstract
![]()
Cluster-size-resolved
ultrafast dynamics of the solvated electron
in neutral water clusters with n = 3 to ∼200
molecules are studied with pump–probe time-of-flight mass spectrometry
after below band gap excitation. For the smallest clusters, no longer-lived
(>100–200 fs) hydrated electrons were detected, indicating
a minimum size of n ∼ 14 for being able to
sustain hydrated electrons. Larger clusters show a systematic increase
of the number of hydrated electrons per molecule on the femtosecond
to picosecond time scale. We propose that with increasing cluster
size the underlying dynamics is governed by more effective electron
formation processes combined with less effective electron loss processes,
such as ultrafast hydrogen ejection and recombination. It appears
unlikely that any size dependence of the solvent relaxation dynamics
would be reflected in the observed time-resolved ion yields.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Ban L, West CW, Chasovskikh E, Gartmann TE, Yoder BL, Signorell R. Below Band Gap Formation of Solvated Electrons in Neutral Water Clusters? J Phys Chem A 2020; 124:7959-7965. [PMID: 32878434 PMCID: PMC7536715 DOI: 10.1021/acs.jpca.0c06935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Indexed: 01/25/2023]
Abstract
Below band gap formation of solvated electrons in neutral water clusters using pump-probe photoelectron imaging is compared with recent data for liquid water and with above band gap excitation studies in liquid and clusters. Similar relaxation times on the order of 200 fs and 1-2 ps are retrieved for below and above band gap excitation, in both clusters and liquid. The independence of the relaxation times from the generation process indicates that these times are dominated by the solvent response, which is significantly slower than the various solvated electron formation processes. The analysis of the temporal evolution of the vertical electron binding energy and the electron binding energy at half-maximum suggests a dependence of the solvation time on the binding energy.
Collapse
Affiliation(s)
- Loren Ban
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Christopher W. West
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Egor Chasovskikh
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Thomas E. Gartmann
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Bruce L. Yoder
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ruth Signorell
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
5
|
Shi R, Zhao Z, Liang X, Su Y, Sai L, Zhao J. Structures and vertical detachment energies of water cluster anions (H2O)−n with n = 6–11. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2567-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Herburger A, Barwa E, Ončák M, Heller J, van der Linde C, Neumark DM, Beyer MK. Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H 2O) n-, n ≤ 200, by Electronic Absorption Spectroscopy. J Am Chem Soc 2019; 141:18000-18003. [PMID: 31651160 PMCID: PMC6856957 DOI: 10.1021/jacs.9b10347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Electronic
absorption spectra of water cluster anions (H2O)n–, n ≤
200, at T = 80 K are obtained by photodissociation
spectroscopy and compared with simulations from literature and experimental
data for bulk hydrated electrons. Two almost isoenergetic electron
binding motifs are seen for cluster sizes 20 ≤ n ≤ 40, which are assigned to surface and partially embedded
isomers. With increasing cluster size, the surface isomer becomes
less populated, and for n ≥ 50, the partially
embedded isomer prevails. The absorption shifts to the blue, reaching
a plateau at n ≈ 100. In this size range,
the absorption spectrum is similar to that of the bulk hydrated electron
but is slightly red-shifted; spectral moment analysis indicates that
these clusters are reasonable model systems for hydrated electrons
near the liquid–vacuum interface.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Daniel M Neumark
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| |
Collapse
|
7
|
Gartmann T, Ban L, Yoder BL, Hartweg S, Chasovskikh E, Signorell R. Relaxation Dynamics and Genuine Properties of the Solvated Electron in Neutral Water Clusters. J Phys Chem Lett 2019; 10:4777-4782. [PMID: 31382737 PMCID: PMC6734797 DOI: 10.1021/acs.jpclett.9b01802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/05/2019] [Indexed: 05/27/2023]
Abstract
We have investigated the solvation dynamics and the genuine binding energy and photoemission anisotropy of the solvated electron in neutral water clusters with a combination of time-resolved photoelectron velocity map imaging and electron scattering simulations. The dynamics was probed with a UV probe pulse following above-band-gap excitation by an EUV pump pulse. The solvation dynamics is completed within about 2 ps. Only a single band is observed in the spectra, with no indication for isomers with distinct binding energies. Data analysis with an electron scattering model reveals a genuine binding energy in the range of 3.55-3.85 eV and a genuine anisotropy parameter in the range of 0.51-0.66 for the ground-state hydrated electron. All of these observations coincide with those for liquid bulk, which is rather unexpected for an average cluster size of 300 molecules.
Collapse
|
8
|
Thaunay F, Jana C, Clavaguéra C, Ohanessian G. Strategy for Modeling the Infrared Spectra of Ion-Containing Water Drops. J Phys Chem A 2018; 122:832-842. [PMID: 29266957 DOI: 10.1021/acs.jpca.7b10554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrated ions are ubiquitous in environmental and biological media. Understanding the perturbation exerted by an ion on the water hydrogen bond network is possible in the nanodrop regime by recording vibrational spectra in the O-H bond stretching region. This has been achieved experimentally in recent years by forming gaseous ions containing tens to hundreds of water molecules and recording their infrared photodissociation spectra. In this paper, we demonstrate the capabilities of a modeling strategy based on an extension of the AMOEBA polarizable force field to implement water atomic charge fluctuations along with those of intramolecular structure along the dynamics. This supplementary flexibility of nonbonded interactions improves the description of the hydrogen bond network and, therefore, the spectroscopic response. Finite temperature IR spectra are obtained from molecular dynamics simulations by computing the Fourier transform of the dipole moment autocorrelation function. Simulations of 1-2 ns are required for extensive sampling in order to reproduce the experimental spectra. Furthermore, bands are assigned with the driven molecular dynamics approach. This method package is shown to compare successfully with experimental spectra for 11 ions in water drops containing 36-100 water molecules. In particular, band frequency shifts of the free O-H stretching modes at the cluster surface are well reproduced as a function of both ion charge and drop size.
Collapse
Affiliation(s)
- Florian Thaunay
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| | - Chandramohan Jana
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| | - Carine Clavaguéra
- Laboratoire de Chimie Physique, Université Paris Sud - CNRS, Université Paris Saclay , 15, avenue Jean Perrin, 91405 Orsay Cedex, France
| | - Gilles Ohanessian
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| |
Collapse
|
9
|
Mones L, Pohl G, Turi L. Ab initio molecular dynamics study of solvated electrons in methanol clusters. Phys Chem Chem Phys 2018; 20:28741-28750. [DOI: 10.1039/c8cp05052j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable surface excess electronic states in small methanol cluster anions were identified and characterized in ab initio molecular dynamics simulations.
Collapse
Affiliation(s)
- Letif Mones
- Mathematics Institute
- University of Warwick
- Zeeman Building
- Coventry
- UK
| | - Gábor Pohl
- Department of Chemistry
- Hunter College
- CUNY
- New York
- USA
| | - László Turi
- Eötvös Loránd University
- Department of Physical Chemistry
- Hungary
| |
Collapse
|
10
|
Farr EP, Zho CC, Challa JR, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. J Chem Phys 2017; 147:074504. [DOI: 10.1063/1.4985906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Jagannadha R. Challa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| |
Collapse
|
11
|
Cooper RJ, O'Brien JT, Chang TM, Williams ER. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops. Chem Sci 2017; 8:5201-5213. [PMID: 28970907 PMCID: PMC5618692 DOI: 10.1039/c7sc00481h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 11/23/2022] Open
Abstract
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory.
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O)n where M = La3+, Ca2+, Na+, Li+, I–, SO42– and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that “free” OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air–water interface (3696.5–3701.0 cm–1), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size.
Collapse
Affiliation(s)
- Richard J Cooper
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Jeremy T O'Brien
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Terrence M Chang
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Evan R Williams
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| |
Collapse
|
12
|
Borgis D, Rossky PJ, Turi L. Electronic Excited State Lifetimes of Anionic Water Clusters: Dependence on Charge Solvation Motif. J Phys Chem Lett 2017; 8:2304-2309. [PMID: 28475840 DOI: 10.1021/acs.jpclett.7b00555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An ongoing controversy about water cluster anions concerns the electron-binding motif, whether the charge center is localized at the surface or within the cluster interior. Here, mixed quantum-classical dynamics simulations have been carried out for a wide range of cluster sizes (n ≤ 1000) for (H2O)n- and (D2O)n-, based on a nonequilibrium first-order rate constant approach. The computed data are in good general agreement with time-resolved photoelectron imaging results (n ≤ 200). The analysis reveals that, for surface state electrons, the cluster size dependence of the excited state electronic energy gap and the magnitude of the nonadiabatic couplings have compensating influences on the excited state lifetimes: the excited state lifetime for surface states reaches a minimum for n ∼ 150 and then increases for larger clusters. It is concluded that the electron resides in a surface-localized motif in all of these measured clusters, dominating at least up to n = 200.
Collapse
Affiliation(s)
- Daniel Borgis
- Pôle de Chimie Théorique, UMR-CNRS PASTEUR, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - Peter J Rossky
- Department of Chemistry, Rice University , P.O. Box 1892, MS-60, Houston, Texas 77251-1892, United States
| | - László Turi
- Department of Physical Chemistry, ELTE Eötvös Loránd University , Budapest 112, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
13
|
Elkins MH, Williams HL, Neumark DM. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy. J Chem Phys 2016; 144:184503. [DOI: 10.1063/1.4948546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Madeline H. Elkins
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Holly L. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Turi L. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters. J Chem Phys 2016; 144:154311. [PMID: 27389224 DOI: 10.1063/1.4945780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
15
|
Turi L. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity? J Chem Theory Comput 2016; 11:1745-55. [PMID: 26889512 DOI: 10.1021/ct501160k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we compare the applicability of three electron–water molecule pseudopotentials in modeling the physical properties of hydrated electrons. Quantum model calculations illustrate that the recently suggested Larsen–Glover–Schwartz (LGS) model and its modified m-LGS version have a too-attractive potential in the vicinity of the oxygen. As a result, LGS models predict a noncavity hydrated electron structure in clusters at room temperature, as seen from mixed one-electron quantum–classical molecular dynamics simulations of water cluster anions, with the electron localizing exclusively in the interior of the clusters. Comparative calculations using the cavity-preferring Turi–Borgis (TB) model predict interior-state and surface-state cluster isomers. The computed associated physical properties are also analyzed and compared to available experimental data. We find that the LGS and m-LGS potentials provide results that appear to be inconsistent with the size dependence of the experimental data. The simulated TB tendencies are qualitatively correct. Furthermore, ab initio calculations on static LGS noncavity structures indicate weak stabilization of the excess electron in regions where the LGS potential preferably and strongly binds the electron. TB calculations give stabilization energies that are in line with the ab initio results. In conclusion, we observe that the cavity-preferring pseudopotential model predicts cluster physical properties in better agreement with experimental data and ab initio calculations than the models predicting noncavity structures for the hydrated electron.
Collapse
|
16
|
Müller JP, Zhavoronkov N, Hertel IV, Schulz CP. Time-resolved excited state energetics of the solvated electron in sodium-doped water clusters. J Phys Chem A 2014; 118:8517-24. [PMID: 24936724 DOI: 10.1021/jp502238c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The energetics and dynamics of the first electronically excited state of solvated electron in sodium-doped water clusters has been studied, by means of time-resolved electron spectra created in a pump-probe fs-laser experiment. The Na ··· (H2O)n clusters were excited by pulses at a wavelength of 795 nm, while ionization was achieved at a wavelength of 398 nm, and the overall cross-correlation fwhm was about 50 fs. Mass-resolved electron spectra were taken using photoelectron-photoion coincidence (PEPICO) spectroscopy for cluster sizes ranging from n = 1 up to 22. The electron spectra give new insights into the dynamics of the excited state of solvated electrons in Na ··· (H2O)n clusters. These dynamics are compared to known results for water cluster anions. In both cases, the observed dynamics are a combination of solvent rearrangement and internal energy conversion.
Collapse
Affiliation(s)
- J P Müller
- Max-Born-Institute , Max-Born-Strasse 2a, 12489 Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Turi L. Hydration dynamics in water clusters via quantum molecular dynamics simulations. J Chem Phys 2014; 140:204317. [DOI: 10.1063/1.4879517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Elkins MH, Williams HL, Shreve AT, Neumark DM. Relaxation mechanism of the hydrated electron. Science 2014; 342:1496-9. [PMID: 24357314 DOI: 10.1126/science.1246291] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.
Collapse
Affiliation(s)
- Madeline H Elkins
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
19
|
Application of ring-polymer molecular dynamics to electronically nonadiabatic excess electron dynamics in water clusters: Importance of nuclear quantum effects. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Shreve AT, Elkins MH, Neumark DM. Photoelectron spectroscopy of solvated electrons in alcohol and acetonitrile microjets. Chem Sci 2013. [DOI: 10.1039/c3sc22063j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
21
|
Turi L, Rossky PJ. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem Rev 2012; 112:5641-74. [PMID: 22954423 DOI: 10.1021/cr300144z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
22
|
Affiliation(s)
- Ryan M. Young
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| |
Collapse
|
23
|
O’Brien JT, Williams ER. Effects of Ions on Hydrogen-Bonding Water Networks in Large Aqueous Nanodrops. J Am Chem Soc 2012; 134:10228-36. [DOI: 10.1021/ja303191r] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jeremy T. O’Brien
- Department of Chemistry, University of California, Berkeley, California 94720-1460,
United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460,
United States
| |
Collapse
|
24
|
Marsalek O, Elles CG, Pieniazek PA, Pluhařová E, VandeVondele J, Bradforth SE, Jungwirth P. Chasing charge localization and chemical reactivity following photoionization in liquid water. J Chem Phys 2012; 135:224510. [PMID: 22168706 DOI: 10.1063/1.3664746] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within ~30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H(2)O(+) + H(2)O → OH + H(3)O(+). The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM∕MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with ~40 fs time resolution and broadband spectral probing across the near-UV and visible are presented and direct comparisons with the theoretical simulations are made. Within the sensitivity and time resolution of the current measurement, a matching spectral signature is not detected. This result is used to place an upper limit on the absorption strength and/or lifetime of the localized H(2)O(+) ((aq)) species.
Collapse
Affiliation(s)
- Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
25
|
Young RM, Yandell MA, King SB, Neumark DM. Thermal effects on energetics and dynamics in water cluster anions (H2O)n−. J Chem Phys 2012; 136:094304. [DOI: 10.1063/1.3689439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Li F, Liu Y, Wang L, Zhao J, Chen Z. Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1163-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Stähler J, Gahl C, Wolf M. Dynamics and reactivity of trapped electrons on supported ice crystallites. Acc Chem Res 2012; 45:131-8. [PMID: 22185698 DOI: 10.1021/ar200170s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.
Collapse
Affiliation(s)
- Julia Stähler
- Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cornelius Gahl
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max-Born-Institute Berlin, Max-Born-Str. 2 A, 12489 Berlin, Germany
| | - Martin Wolf
- Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
28
|
Jacobson LD, Herbert JM. Theoretical Characterization of Four Distinct Isomer Types in Hydrated-Electron Clusters, and Proposed Assignments for Photoelectron Spectra of Water Cluster Anions. J Am Chem Soc 2011; 133:19889-99. [PMID: 22026436 DOI: 10.1021/ja208024p] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leif D. Jacobson
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
|
30
|
Prell JS, O’Brien JT, Williams ER. Structural and Electric Field Effects of Ions in Aqueous Nanodrops. J Am Chem Soc 2011; 133:4810-8. [DOI: 10.1021/ja108341t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Prell
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jeremy T. O’Brien
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
31
|
Stähler J, Meyer M, Bovensiepen U, Wolf M. Solvation dynamics of surface-trapped electrons at NH3 and D2O crystallites adsorbed on metals: from femtosecond to minute timescales. Chem Sci 2011. [DOI: 10.1039/c0sc00644k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
32
|
Young RM, Yandell MA, Niemeyer M, Neumark DM. Photoelectron imaging of tetrahydrofuran cluster anions (THF)n− (1≤n≤100). J Chem Phys 2010; 133:154312. [PMID: 20969391 DOI: 10.1063/1.3489686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ryan M Young
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
33
|
Jacobson LD, Herbert JM. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum. J Chem Phys 2010; 133:154506. [DOI: 10.1063/1.3490479] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Marsalek O, Uhlig F, Frigato T, Schmidt B, Jungwirth P. Dynamics of electron localization in warm versus cold water clusters. PHYSICAL REVIEW LETTERS 2010; 105:043002. [PMID: 20867840 DOI: 10.1103/physrevlett.105.043002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Indexed: 05/29/2023]
Abstract
The process of electron localization on a cluster of 32 water molecules at 20, 50, and 300 K is unraveled using ab initio molecular dynamics simulations. In warm, liquid clusters, the excess electron relaxes from an initial diffuse and weakly bound structure to an equilibrated, strongly bound species within 1.5 ps. In contrast, in cold, glassy clusters the relaxation processes is not completed and the electron becomes trapped in a metastable surface state with an intermediate binding energy. These results question the validity of extrapolations of the properties of solvated electrons from cold clusters of increasing size to the liquid bulk.
Collapse
Affiliation(s)
- Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Young RM, Griffin GB, Kammrath A, Ehrler OT, Neumark DM. Time-resolved dynamics in acetonitrile cluster anions (CH3CN)n-. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2009.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|