Zen H, Hajima R, Ohgaki H. Full characterization of superradiant pulses generated from a free-electron laser oscillator.
Sci Rep 2023;
13:6350. [PMID:
37072550 PMCID:
PMC10113263 DOI:
10.1038/s41598-023-33550-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The detailed structure of superradiant pulses generated from a free-electron laser (FEL) oscillator was experimentally revealed for the first time. Owing to the phase retrieval with a combination of linear and nonlinear autocorrelation measurements, we successfully reconstructed the temporal waveform of an FEL pulse including its phase variation. The waveform clearly exhibits the features of a superradiant pulse, the main pulse followed by a train of sub-pulses with π-phase jumps, reflecting the physics of light-matter resonant interaction. From numerical simulations, the train of sub-pulses was found to originate from repeated formation and deformation of microbunches accompanied with a temporal slippage of the electrons and light field, a process quite different from coherent many-body Rabi oscillations observed in superradiance from atomic systems.
Collapse