1
|
Janesko BG. Adiabatic projection: Bridging ab initio, density functional, semiempirical, and embedding approximations. J Chem Phys 2022; 156:014111. [DOI: 10.1063/5.0076144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| |
Collapse
|
2
|
Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021; 50:8470-8495. [PMID: 34060549 DOI: 10.1039/d0cs01074j] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76129, USA.
| |
Collapse
|
3
|
Verma P, Janesko BG, Wang Y, He X, Scalmani G, Frisch MJ, Truhlar DG. M11plus: A Range-Separated Hybrid Meta Functional with Both Local and Rung-3.5 Correlation Terms and High Across-the-Board Accuracy for Chemical Applications. J Chem Theory Comput 2019; 15:4804-4815. [DOI: 10.1021/acs.jctc.9b00411] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pragya Verma
- Department of Chemistry, Chemical Theory Center, Nanoporous Materials Genome Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76110, United States
| | - Ying Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 200062, China
| | | | | | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, Nanoporous Materials Genome Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
4
|
Janesko BG, Scalmani G, Frisch MJ. Density functionals for nondynamical correlation constructed from an upper bound to the exact exchange energy density. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1535673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | | | | |
Collapse
|
5
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
6
|
Janesko BG, Proynov E, Scalmani G, Frisch MJ. Long-range-corrected Rung 3.5 density functional approximations. J Chem Phys 2018; 148:104112. [DOI: 10.1063/1.5017981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76110, USA
| | - Emil Proynov
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76110, USA
| | | | | |
Collapse
|
7
|
Determan JJ, Poole K, Scalmani G, Frisch MJ, Janesko BG, Wilson AK. Comparative Study of Nonhybrid Density Functional Approximations for the Prediction of 3d Transition Metal Thermochemistry. J Chem Theory Comput 2017; 13:4907-4913. [PMID: 28877436 DOI: 10.1021/acs.jctc.7b00809] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utility of several nonhybrid density functional approximations (DFAs) is considered for the prediction of gas phase enthalpies of formation for a large set of 3d transition metal-containing molecules. Nonhybrid DFAs can model thermochemical values for 3d transition metal-containing molecules with accuracy comparable to that of hybrid functionals. The GAM-generalized gradient approximation (GGA); the TPSS, M06-L, and MN15-L meta-GGAs; and the Rung 3.5 PBE+ΠLDA(s) DFAs all give root-mean-square deviations below that of the widely used B3LYP hybrid. Modern nonhybrid DFAs continue to show utility for transition metal thermochemistry.
Collapse
Affiliation(s)
- John J Determan
- Department of Chemistry, Texas Christian University , Fort Worth, Texas 76129, United States
| | - Katelyn Poole
- Department of Chemistry, Texas Christian University , Fort Worth, Texas 76129, United States.,Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas , Denton, Texas 76203-5017, United States
| | - Giovanni Scalmani
- Gaussian, Inc. , 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian, Inc. , 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Benjamin G Janesko
- Department of Chemistry, Texas Christian University , Fort Worth, Texas 76129, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824 United States
| |
Collapse
|
8
|
Abstract
The exact exchange energy and its energy density are useful but computationally expensive ingredients in density functional approximations for Kohn-Sham density functional theory. We present detailed tests of some exact nonempirical upper bounds to exact exchange. These "Rung 3.5" upper bounds contract the Kohn-Sham one-particle density matrix with model density matrices used to construct semilocal model exchange holes and invoke the Cauchy-Schwarz inequality. The contraction automatically eliminates the computationally expensive long-range component of the exact exchange hole. Numerical tests show that the exchange upper bounds underestimate total exchange energies while predicting other properties with accuracy approaching standard hybrid approximations.
Collapse
Affiliation(s)
- Emil Proynov
- Department of Chemistry and Biochemistry, Texas Christian University , Fort Worth, Texas 76110, United States
| | - Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University , Fort Worth, Texas 76110, United States
| |
Collapse
|
9
|
Abstract
PBE calculations, performed non-self-consistently on densities evaluated with Rung 3.5 density functionals, give improved performance for hydrogen transfer reaction barriers.
Collapse
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry & Biochemistry
- Texas Christian University
- 2800 S. University Dr
- Fort Worth
- USA
| |
Collapse
|
10
|
Janesko BG, Scalmani G, Frisch MJ. Practical auxiliary basis implementation of Rung 3.5 functionals. J Chem Phys 2014; 141:034103. [DOI: 10.1063/1.4887085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
|
12
|
Janesko BG. Nonempirical Rung 3.5 density functionals from the Lieb-Oxford bound. J Chem Phys 2012; 137:224110. [DOI: 10.1063/1.4769227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
13
|
Janesko BG, Aguero A. Nonspherical model density matrices for Rung 3.5 density functionals. J Chem Phys 2012; 136:024111. [DOI: 10.1063/1.3675681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
14
|
Phillips JJ, Peralta JE, Janesko BG. Magnetic exchange couplings evaluated with Rung 3.5 density functionals. J Chem Phys 2011; 134:214101. [DOI: 10.1063/1.3596070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
15
|
Janesko BG. Comparing modern density functionals for conjugated polymer band structures: Screened hybrid, Minnesota, and Rung 3.5 approximations. J Chem Phys 2011; 134:184105. [DOI: 10.1063/1.3589145] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Haunschild R, Henderson TM, Jiménez-Hoyos CA, Scuseria GE. Many-electron self-interaction and spin polarization errors in local hybrid density functionals. J Chem Phys 2011; 133:134116. [PMID: 20942532 DOI: 10.1063/1.3478534] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Errors for systems with noninteger occupation have been connected to common failures of density functionals. Previously, global hybrids and pure density functionals have been investigated for systems with noninteger charge and noninteger spin state. Local hybrids have not been investigated for either of those systems to the best of our knowledge. This study intends to close this gap. We investigate systems with noninteger charge to assess the many-electron self-interaction error and systems with noninteger spin state to assess the spin polarization error of recently proposed local hybrids and their range-separated variants. We find that long-range correction is very important to correct for many-electron self-interaction error in cations, whereas most full-range local hybrids seem to be sufficient for anions, where long-range-corrected density functionals tend to overcorrect. On the other hand, while all hitherto proposed long-range-corrected density functionals show large spin polarization errors, the Perdew-Staroverov-Tao-Scuseria (PSTS) functional performs best of all local hybrids in this case and shows an outstanding behavior for the dependence of the energy on the spin polarization.
Collapse
Affiliation(s)
- Robin Haunschild
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | | | | | | |
Collapse
|
17
|
|