1
|
Vogt J. CO 2 ultrathin film growth on a monolayer of CO 2 adsorbed on the NaCl(100) surface: sticking coefficient and IR-optical signatures in the ν 3 region. Phys Chem Chem Phys 2024; 26:21019-21029. [PMID: 39051430 DOI: 10.1039/d4cp02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
CO2 ultrathin molecular films were grown onto a preadsorbed monolayer NaCl(100)/p(2 × 1)-CO2 at 40 K. Polarization infrared spectroscopy (PIRS) reveals that so-prepared films have better quality than directly grown films. A sticking probability of 0.74 ± 0.1 was deduced from the integrated IR absorption. The presence of the monolayer doublet in the film spectra suggests a Stranski-Krastanov film growth with locally varying film thicknesses on the surface. In the region of the ν3(12C16O2) band, fine structure was observed between the well-known transverse-optical (TO) and longitudinal optical (LO) bands. Two independent computational models were applied to analyze the nature of the observed fine structure. Both pair potential calculations in combination with a vibrational exciton model as well as plane-wave density functional theory (DFT) in combination with phonon calculations of IR intensities at the Γ-point reveal that a weak mode visible in s-polarization and p-polarization originates from a vibrational film excitation located near the substrate interface. A series of p-polarized weak bands appearing and partly disappearing upon film-growth is assigned to film stacks of unique local thickness.
Collapse
Affiliation(s)
- Jochen Vogt
- Chemisches Institut der Universität Magdeburg, Universitätsplatz 2, Magdeburg, Germany.
| |
Collapse
|
2
|
Vogt J. Strain modulation in small molecule physisorption in two dimensions: LEED structure analysis and DFT modeling of the system. Phys Chem Chem Phys 2022; 24:9168-9175. [PMID: 35394480 DOI: 10.1039/d1cp05827d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the system was investigated experimentally by means of quantitative LEED I(V) analysis and computationally using dispersion corrected density functional theory (DFT-D). Three different structure models with four, five, and six molecules were considered. The lowest reliability factors and thus best agreement of measured and calculated I(V) curves was found for the structure model containing five molecules per surface unit cell. Essential features of the experimental best-fit adlayer structure are supported by DFT. A slight inclination and lateral shift of twofold coordinated molecules away from the on-top position over Na+ adsorption sites is interpreted as compensation of strain between substrate and adlayer.
Collapse
Affiliation(s)
- Jochen Vogt
- Chemisches Institut der Universität Magdeburg, Universitätsplatz 2, Magdeburg, Germany.
| |
Collapse
|
3
|
Grimme S, Hansen A, Ehlert S, Mewes JM. r 2SCAN-3c: A "Swiss army knife" composite electronic-structure method. J Chem Phys 2021; 154:064103. [PMID: 33588555 DOI: 10.1063/5.0040021] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recently proposed r2SCAN meta-generalized-gradient approximation (mGGA) of Furness and co-workers is used to construct an efficient composite electronic-structure method termed r2SCAN-3c. To this end, the unaltered r2SCAN functional is combined with a tailor-made triple-ζ Gaussian atomic orbital basis set as well as with refitted D4 and geometrical counter-poise corrections for London-dispersion and basis set superposition error. The performance of the new method is evaluated for the GMTKN55 database covering large parts of chemical space with about 1500 data points, as well as additional benchmarks for non-covalent interactions, organometallic reactions, and lattice energies of organic molecules and ices, as well as for the adsorption on polar salt and non-polar coinage-metal surfaces. These comprehensive tests reveal a spectacular performance and robustness of r2SCAN-3c: It by far surpasses its predecessor B97-3c at only twice the cost and provides one of the best results of all semi-local density-functional theory (DFT)/QZ methods ever tested for the GMTKN55 database at one-tenth of the cost. Specifically, for reaction and conformational energies as well as non-covalent interactions, it outperforms prominent hybrid-DFT/QZ approaches at two to three orders of magnitude lower cost. Perhaps, the most relevant remaining issue of r2SCAN-3c is self-interaction error (SIE), owing to its mGGA nature. However, SIE is slightly reduced compared to other (m)GGAs, as is demonstrated in two examples. After all, this remarkably efficient and robust method is chosen as our new group default, replacing previous composite DFT and partially even expensive high-level methods in most standard applications for systems with up to several hundreds of atoms.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
4
|
Caldeweyher E, Mewes JM, Ehlert S, Grimme S. Extension and evaluation of the D4 London-dispersion model for periodic systems. Phys Chem Chem Phys 2020; 22:8499-8512. [PMID: 32292979 DOI: 10.1039/d0cp00502a] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present an extension of the DFT-D4 model [J. Chem. Phys., 2019, 150, 154122] for periodic systems. The main new ingredients are additional reference polarizabilities for highly-coordinated group 1-5 elements derived from pseudo-periodic electrostatically-embedded cluster calculations. To illustrate the performance of the updated method, several test cases are considered, for which we compare D4 to its predecessor D3(BJ), as well as to a comprehensive set of other dispersion-corrected methods. The largest improvements are observed for solid-state polarizabilities of 16 inorganic salts, where the D4 model achieves an unprecedented accuracy, surpassing its predecessor as well as other, computationally much more demanding approaches. For cell volumes and lattice energies of two sets of chemically diverse molecular crystals, the accuracy gain is less pronounced compared to the already excellently performing D3(BJ) method. For the challenging adsorption energies of small organic molecules on metallic as well as on ionic surfaces, DFT-D4 provides values in good agreement with experimental and/or high-level references. These results suggest the application of the proposed D4 model as a physically improved yet computationally efficient dispersion correction for standard DFT calculations as well as low-cost approaches like semi-empirical or even force-field models.
Collapse
Affiliation(s)
| | | | | | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Bonn, Germany.
| |
Collapse
|
5
|
Bučko T, Lebègue S, Ángyán JG, Hafner J. Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning. J Chem Phys 2015; 141:034114. [PMID: 25053308 DOI: 10.1063/1.4890003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently we have demonstrated that the applicability of the Tkatchenko-Scheffler (TS) method for calculating dispersion corrections to density-functional theory can be extended to ionic systems if the Hirshfeld method for estimating effective volumes and charges of atoms in molecules or solids (AIM's) is replaced by its iterative variant [T. Bučko, S. Lebègue, J. Hafner, and J. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)]. The standard Hirshfeld method uses neutral atoms as a reference, whereas in the iterative Hirshfeld (HI) scheme the fractionally charged atomic reference states are determined self-consistently. We show that the HI method predicts more realistic AIM charges and that the TS/HI approach leads to polarizabilities and C6 dispersion coefficients in ionic or partially ionic systems which are, as expected, larger for anions than for cations (in contrast to the conventional TS method). For crystalline materials, the new algorithm predicts polarizabilities per unit cell in better agreement with the values derived from the Clausius-Mosotti equation. The applicability of the TS/HI method has been tested for a wide variety of molecular and solid-state systems. It is demonstrated that for systems dominated by covalent interactions and/or dispersion forces the TS/HI method leads to the same results as the conventional TS approach. The difference between the TS/HI and TS approaches increases with increasing ionicity. A detailed comparison is presented for isoelectronic series of octet compounds, layered crystals, complex intermetallic compounds, and hydrides, and for crystals built of molecules or containing molecular anions. It is demonstrated that only the TS/HI method leads to accurate results for systems where both electrostatic and dispersion interactions are important, as illustrated for Li-intercalated graphite and for molecular adsorption on the surfaces in ionic solids and in the cavities of zeolites.
Collapse
Affiliation(s)
- Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia and Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava, Slovakia
| | - Sébastien Lebègue
- Equipe modélisation quantique, Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-lès-Nancy F-54506, France
| | - János G Ángyán
- Equipe modélisation quantique, Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-lès-Nancy F-54506, France
| | - Jürgen Hafner
- Department of Computational Materials Physics, Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse, Wien 1090, Austria
| |
Collapse
|
6
|
Höfert O, Lorenz MPA, Streber R, Zhao W, Bayer A, Steinrück HP, Papp C. Adsorption and reaction of acetylene on clean and oxygen-precovered Pd(100) studied with high-resolution X-ray photoelectron spectroscopy. J Chem Phys 2013; 139:164706. [DOI: 10.1063/1.4825112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
7
|
Vogt J. The structure of N2 adsorbed on the rumpled NaCl(100) surface—A combined LEED and DFT-D study. J Chem Phys 2012; 137:174705. [PMID: 23145740 DOI: 10.1063/1.4764299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jochen Vogt
- Chemisches Institut der Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
8
|
|
9
|
Ehrlich S, Moellmann J, Reckien W, Bredow T, Grimme S. System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. Chemphyschem 2011; 12:3414-20. [PMID: 22012803 DOI: 10.1002/cphc.201100521] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 11/09/2022]
Abstract
Dispersion-corrected density functional theory calculations (DFT-D3) were performed for the adsorption of CO on MgO and C(2) H(2) on NaCl surfaces. An extension of our non-empirical scheme for the computation of atom-in-molecules dispersion coefficients is proposed. It is based on electrostatically embedded M(4)X(4) (M=Na, Mg) clusters that are used in TDDFT calculations of dynamic dipole polarizabilities. We find that the C(MM)(6) dispersion coefficients for bulk NaCl and MgO are reduced by factors of about 100 and 35 for Na and Mg, respectively, compared to the values of the free atoms. These are used in periodic DFT calculations with the revPBE semi-local density functional. As demonstrated by calculations of adsorption potential energy curves, the new C(6) coefficients lead to much more accurate energies (E(ads)) and molecule-surface distances than with previous DFT-D schemes. For NaCl/C(2) H(2) we obtained at the revPBE-D3(BJ) level a value of E(ads) =-7.4 kcal mol(-1) in good agreement with experimental data (-5.7 to -7.1 kcal mol(-1)). Dispersion-uncorrected DFT yields an unbound surface state. For the MgO/CO system, the computed revPBE-D3(BJ) value of E(ads) =-4.1 kcal mol(-1) is also in reasonable agreement with experimental results (-3.0 kcal mol(-1)) when thermal corrections are taken into account. Our new dispersion correction also improves computed lattice constants of the bulk systems significantly compared to plain DFT or previous DFT-D results. The extended DFT-D3 scheme also provides accurate non-covalent interactions for ionic systems without empirical adjustments and is suggested as a general tool in surface science.
Collapse
Affiliation(s)
- Stephan Ehrlich
- Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|