1
|
Kumar D, Nadda R, Repaka R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput 2024; 62:1925-1957. [PMID: 38436835 DOI: 10.1007/s11517-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
2
|
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S, Feuilloley MGJ. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation. Bioengineering (Basel) 2022; 9:646. [PMID: 36354557 PMCID: PMC9687856 DOI: 10.3390/bioengineering9110646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| | | | | | | | | | | | | | | | - Marc G. J. Feuilloley
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| |
Collapse
|
3
|
Zhang Y, Gregory DA, Zhang Y, Smith PJ, Ebbens SJ, Zhao X. Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804213. [PMID: 30515976 DOI: 10.1002/smll.201804213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Stirring small volumes of solution can reduce immunoassay readout time, homogenize cell cultures, and increase enzyme reactivity in bioreactors. However, at present many small scale stirring methods require external actuation, which can be cumbersome. To address this, here, reactive inkjet printing is shown to be able to produce autonomously rotating biocompatible silk-based microstirrers that can enhance fluid mixing. Rotary motion is generated either by release of a surface active agent (small molecular polyethylene glycol) resulting in Marangoni effect, or by catalytically powered bubble propulsion. The Marangoni driven devices do not require any chemicals to be added to the fluid as the "fuel," while the catalytically powered devices are powered by decomposing substrate molecules in solution. A comparison of Marangoni effect and enzyme powered stirrers is made. Marangoni effect driven stirrers rotate up to 600 rpm, 75-100-fold faster than enzyme driven microstirrers, however enzyme powered stirrers show increased longevity. Further to stirring applications, the sensitivity of the motion generation mechanisms to fluid properties allows the rotating devices to also be exploited for sensing applications, for example, acting as motion sensors for water pollution.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Yi Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Patrick J Smith
- Department of Mechanical Engineering, University of Sheffield, 64 Garden Street, Sheffield, S1 4BJ, UK
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Gehu Road, Changzhou, 213164, China
| |
Collapse
|
4
|
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-Saldívar R, Iqbal HMN. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. MICROMACHINES 2018; 9:E536. [PMID: 30424469 PMCID: PMC6215144 DOI: 10.3390/mi9100536] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called "microfluidic technology" has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Angel M Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-Isaías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Isaac E García-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Arturo Hernández-Antonio
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
5
|
Zhou X, Chen C, Cao C, Song T, Yang H, Song W. Enhancing reaction rate in a Pickering emulsion system with natural magnetotactic bacteria as nanoscale magnetic stirring bars. Chem Sci 2018; 9:2575-2580. [PMID: 29719712 PMCID: PMC5897955 DOI: 10.1039/c7sc05164f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/25/2022] Open
Abstract
Pickering emulsion is emerging as an advanced platform for catalysis because of the large oil/water interface area for reaction and its superior efficiency. How to enhance the mass transportation within the micro-droplets is the biggest obstacle in further improving the efficiency of the Pickering emulsion system. In this study, we propose and solve this problem for the first time using natural magnetotactic bacteria as nanoscale magnetic stirring bars, which can be encapsulated into each micro-droplet and used to stir the solution to accelerate the mass transportation under an external magnet, and thus significantly enhance the reaction rate of Pickering emulsion. Taking the epoxidation of cyclooctene in the Pickering emulsion system as a demonstration, the reaction rate was enhanced three times with nanoscale magnetic stirring bars compared to that of traditional Pickering emulsion, and was even thirty times higher than that of conventional stirrer-driven biphasic systems. We envision that this strategy will bring biphasic reactions with fundamental innovations toward more green, efficient and sustainable chemistry.
Collapse
Affiliation(s)
- Xin Zhou
- Beijing National Laboratory for Molecular Sciences , Laboratory of Molecular Nanostructures and Nanotechnology , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , China . ;
- University of Chinese Academy of Sciences , Beijing100049 , China
| | - Changyou Chen
- Institute of Electrical Engineering , Chinese Academy of Sciences , Beijing 100190 , China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences , Laboratory of Molecular Nanostructures and Nanotechnology , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , China . ;
- University of Chinese Academy of Sciences , Beijing100049 , China
| | - Tao Song
- Institute of Electrical Engineering , Chinese Academy of Sciences , Beijing 100190 , China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences , Laboratory of Molecular Nanostructures and Nanotechnology , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , China . ;
- University of Chinese Academy of Sciences , Beijing100049 , China
| |
Collapse
|
6
|
Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncol Lett 2017; 14:6999-7010. [PMID: 29344128 DOI: 10.3892/ol.2017.7134] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
In previous years, three-dimensional (3D) cell culture technology has become a focus of research in tumor cell biology, using a variety of methods and materials to mimic the in vivo microenvironment of cultured tumor cells ex vivo. These 3D tumor cells have demonstrated numerous different characteristics compared with traditional two-dimensional (2D) culture. 3D cell culture provides a useful platform for further identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of the key points of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments, and is of great importance for further research in the field of tumor biology. In the present review, previous 3D cell culture applications, focusing on anti-tumor drug susceptibility testing, are summarized.
Collapse
Affiliation(s)
- Donglai Lv
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Zongtao Hu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Lin Lu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Husheng Lu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xiuli Xu
- Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
7
|
Khosrowshahi YB, Khoshfetrat AB, Shamsasenjan K. Ex vivo expansion of hematopoietic stem cells in a proliferation chamber with external stirred conditioning tank: Sequential optimization of growth factors. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Younes Beygi Khosrowshahi
- Faculty of Chemical Engineering; Sahand University of Technology; Tabriz Iran
- Stem Cell and Tissue Engineering Research Laboratory; Sahand University of Technology; Tabriz Iran
| | - Ali Baradar Khoshfetrat
- Faculty of Chemical Engineering; Sahand University of Technology; Tabriz Iran
- Stem Cell and Tissue Engineering Research Laboratory; Sahand University of Technology; Tabriz Iran
| | - Karim Shamsasenjan
- Hematology & Oncology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tabriz Iran
| |
Collapse
|
8
|
Khosrowshahi YB, Khoshfetrat AB, Abolghasemi Z, Shams Asenjan K. Performance evaluation of a proliferation chamber with external stirred conditioning tank for expansion of a suspendable stem cell model. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Xue C, Kwek KYC, Chan JKY, Chen Q, Lim M. The hollow fiber bioreactor as a stroma-supported, serum-free ex vivo expansion platform for human umbilical cord blood cells. Biotechnol J 2014; 9:980-9. [DOI: 10.1002/biot.201300320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/25/2013] [Accepted: 01/16/2014] [Indexed: 12/21/2022]
|
10
|
Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 2014; 25:45-50. [DOI: 10.1016/j.copbio.2013.08.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
|
11
|
Chong WH, Chin LK, Tan RLS, Wang H, Liu AQ, Chen H. Stirring in Suspension: Nanometer-Sized Magnetic Stir Bars. Angew Chem Int Ed Engl 2013; 52:8570-3. [DOI: 10.1002/anie.201303249] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 01/08/2023]
|
12
|
Chong WH, Chin LK, Tan RLS, Wang H, Liu AQ, Chen H. Stirring in Suspension: Nanometer-Sized Magnetic Stir Bars. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Andrade PZ, dos Santos F, Cabral JMS, da Silva CL. Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J Tissue Eng Regen Med 2013; 9:988-1003. [PMID: 23564692 DOI: 10.1002/term.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Umbilical cord blood (UCB) transplantation has observed a significant increase in recent years, due to the unique features of UCB haematopoietic stem/progenitor cells (HSCs) for the treatment of blood-related disorders. However, the low cell numbers available per UCB unit significantly impairs the widespread use of this source for transplantation of adult patients, resulting in graft failure, delayed engraftment and delayed immune reconstitution. In order to overcome this issue, distinct approaches are now being considered in clinical trials, such as double-UCB transplantation, intrabone injection or ex vivo expansion. In this article the authors review the current state of the art, future trends and challenges on the ex vivo expansion of UCB HSCs, focusing on culture parameters affecting the yield and quality of the expanded HSC grafts: novel HSC selection schemes prior to cell culture, cytokine/growth factor cocktails, the impact of biochemical factors (e.g. O2 ) or the addition of supportive cells, e.g. mesenchymal stem/stromal cell (MSC)-based feeder layers) were addressed. Importantly, a critical challenge in cellular therapy is still the scalability, reproducibility and control of the expansion process, in order to meet the clinical requirements for therapeutic applications. Efficient design of bioreactor systems and operation modes are now the focus of many bioengineers, integrating the increasing 'know-how' on HSC biology and physiology, while complying with the GMP standards for the production of cellular products, i.e. through the use of commercially available, highly controlled, disposable technologies.
Collapse
Affiliation(s)
- Pedro Z Andrade
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Francisco dos Santos
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
14
|
Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages CP, Krull R, Büttgenbach S. Vertical microbubble column-A photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. BIOMICROFLUIDICS 2012; 6:34106. [PMID: 23882299 PMCID: PMC3416849 DOI: 10.1063/1.4738587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/03/2012] [Indexed: 05/11/2023]
Abstract
This paper presents a vertically positioned microfluidic system made of poly(dimethylsiloxane) (PDMS) and glass, which can be applied as a microbubble column (μBC) for biotechnological screening in suspension. In this μBC, microbubbles are produced in a cultivation chamber through an integrated nozzle structure. Thus, homogeneous suspension of biomass is achieved in the cultivation chamber without requiring additional mixing elements. Moreover, blockage due to produced carbon dioxide by the microorganisms-a problem predominant in common, horizontally positioned microbioreactors (MBRs)-is avoided, as the gas bubbles are released by buoyancy at the upper part of the microsystem. The patterned PDMS layer is based on an optimized two-lithographic process. Since the naturally hydrophobic PDMS causes problems for the sufficient production of microbubbles, a method based on polyelectrolyte multilayers is applied in order to allow continuous hydrophilization of the already bonded PDMS-glass-system. The μBC comprises various microelements, including stabilization of temperature, control of continuous bubble formation, and two optical configurations for measurement of optical density with two different sensitivities. In addition, the simple and robust application and handling of the μBC is achieved via a custom-made modular plug-in adapter. To validate the scalability from laboratory scale to microscale, and thus to demonstrate the successful application of the μBC as a screening instrument, a batch cultivation of Saccharomyces cerevisiae is performed in the μBC and compared to shake flask cultivation. Monitoring of the biomass growth in the μBC with the integrated online analytics resulted in a specific growth rate of 0.32 h(-1), which is almost identical to the one achieved in the shake flask cultivation (0.31 h(-1)). Therefore, the validity of the μBC as an alternative screening tool compared to other conventional laboratory scale systems in bioprocess development is proven. In addition, vertically positioned microbioreactors show high potential in comparison to conventional screening tools, since they allow for high density of integrated online analytics and therefore minimize time and cost for screening and guarantee improved control and analysis of cultivation parameters.
Collapse
Affiliation(s)
- Stefanie Demming
- Institut für Mikrotechnik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rodrigues CAV, Fernandes TG, Diogo MM, da Silva CL, Cabral JMS. Stem cell cultivation in bioreactors. Biotechnol Adv 2011; 29:815-29. [PMID: 21726624 DOI: 10.1016/j.biotechadv.2011.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/11/2011] [Accepted: 06/12/2011] [Indexed: 12/22/2022]
Abstract
Cell-based therapies have generated great interest in the scientific and medical communities, and stem cells in particular are very appealing for regenerative medicine, drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions, such as blood cells, nerve cells or cardiac muscle. However, the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors, particularly considerations regarding critical culture parameters, possible bioreactor configurations, and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines, while using robust and cost-effective approaches.
Collapse
Affiliation(s)
- Carlos A V Rodrigues
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
16
|
Luni C, Zagallo M, Albania L, Piccoli M, Pozzobon M, De Coppi P, Elvassore N. Design of a stirred multiwell bioreactor for expansion of CD34+ umbilical cord blood cells in hypoxic conditions. Biotechnol Prog 2011; 27:1154-62. [PMID: 21674817 DOI: 10.1002/btpr.582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/15/2011] [Indexed: 01/05/2023]
Abstract
Besides having a metabolic role, oxygen is recognized as an important signaling stimulus for stem cells. In hematopoiesis, hypoxia seems to favor stem cell self-renewal. In fact, long-term repopulating hematopoietic stem cells reside in bone marrow at concentrations as low as 1% oxygen. However, O2 concentration is difficult to control in vitro. Thermodynamically, we found significant differences between O2 solubility in different media, and in presence of serum. Furthermore, we verified that medium equilibration with a hypoxic atmosphere requires several hours. Thus, in a static culture, the effective O2 concentration in the cell immediate microenvironment is difficult to control and subject to concentration gradients. Stirred systems improve homogeneity within the culture volume. In this work, we developed a stirred bioreactor to investigate hypoxia effect on the expression of stem cell markers in CD34+ cells from umbilical cord blood. The stirring system was designed on top of a standard six-well plate to favor continuity with conventional static conditions and transfer of culture protocols. The bioreactor volume (10 mL/well) is suitable for cell expansion and multiparametric flow cytometry analyses. First, it was tested at 21% O2 for biocompatibility and other possible effects on the cells compared to static conditions. Then, it was used to study c-kit expression of CD34+ cells at 5% O2, using 21%-O2 cultures as a control. In hypoxia we found that CD34+ cells maintained a higher expression of c-kit. Further investigation is needed to explore the dynamics of interaction between oxygen- and c-kit-dependent pathways at the molecular level.
Collapse
Affiliation(s)
- Camilla Luni
- Dept. of Chemical Engineering, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|