1
|
Cai S, Ma Z, Ge Z, Yang W. Recent advances in optically induced di-electrophoresis and its biomedical applications. Biomed Microdevices 2022; 24:22. [PMID: 35689721 DOI: 10.1007/s10544-022-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The development of the micro/nano science and technology has promoted the evolvement of human civilization tremendously. The advancement of the micro/nano science and technology highly depends on the progress of the micro/nano manipulation techniques, and the micro/nano-scaled manipulation level is the critical sign of the micro/nano science and technology. This review, aimed at the demand and the challenge of the micro/nano material and biomedical fields and related to the scientific issues and implementation techniques of the optically induced di-electrophoresis (ODEP). We explained its working principle, manipulating method, and influencing factors of ODEP force to a certain extent. A number of application fields based-ODEP technology and specific applications so far are summarized and reviewed. Finally, some perspectives are provided on current development trends, future research directions, and challenges of ODEP.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zheng Ma
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Pandey A, Murmu K, Gooh Pattader PS. Non-equilibrium thermal annealing of a polymer blend in bilayer settings for complex micro/nano-patterning. RSC Adv 2021; 11:10183-10193. [PMID: 35423522 PMCID: PMC8695700 DOI: 10.1039/d1ra00017a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/26/2021] [Indexed: 01/30/2023] Open
Abstract
Micro phase separation in a thin film of a polymer blend leads to interesting patterns on different substrates. A plethora of studies in this field discussed the effect of the surface energy of the underlying tethered polymer brush or substrate on the final morphology of the polymer blend. The conventional process toward the final morphology is rather slow. Here, aiming fast lithography, we induce the kinetically driven morphological evolution by rapid thermal annealing (RTA) of the polymer blend of polystyrene (PS) and polymethylmethacrylate (PMMA) in bilayer settings at a very high temperature. The underlying film consists of untethered constituent homopolymers or their blend or random-co-polymer (RCP). Apart from the phase inversion of the blend on the PS homopolymer, a rich morphology of the blend on the RCP underlayer is uncovered with systematic investigation of the film using sequential washing with selective solvents. The dissolution characteristics and the thermal stability of the constituent polymers corroborated the observation. Based on the understanding of the morphological evolution, fabrication of a complex shaped micro/nano-pattern with multiple length scales is demonstrated using this blend/RCP system. This study shows a novel methodology for easy fabrication of hierarchical small length scale complex structures.
Collapse
Affiliation(s)
- Ankur Pandey
- Department of Chemical Engineering, Indian Institute of Technology Guwahati 781039 India
| | - Kaniska Murmu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati 781039 India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering, Indian Institute of Technology Guwahati 781039 India
- Center for Nanotechnology, Indian Institute of Technology Guwahati 781039 India
| |
Collapse
|
3
|
Roy P, Mukherjee R, Bandyopadhyay D, Gooh Pattader PS. Electrodynamic-contact-line-lithography with nematic liquid crystals for template-less E-writing of mesopatterns on soft surfaces. NANOSCALE 2019; 11:16523-16533. [PMID: 31454013 DOI: 10.1039/c9nr05729c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the development of a single-step, template-less and fast pathway, namely, Electrodynamic-Contact-Line-Lithography (ECLL), to write micro to nanopatterns on the surface of a soft polymer film. As a model system, a layer of nematic liquid crystals (NLC), resting on a polymer thin film, was sandwiched between a pair of electrodes emulating the electrowetting on a dielectric (EWOD) setup. Upon the application of electric field, the Maxwell stresses thus generated at the NLC-polymer interface due to the high dielectric contrast stimulated an unprecedented fingering instability at the advancing NLC-polymer-air contact line. In the process, the advancing electrospreading front of NLC left the footprint of an array of micro to nanoscale wells on the polymer surface with a long-range ordering thus unveiling a pathway for maskless patterning of a soft elastic film. Unlike the conventional electric field induced lithography (EFL), the meso-scale morphology was found to follow the short wavelength-scales as the periodicity of the patterns (λc) varied linearly with the thickness of the film (h), (λc∝h). The high dielectric contrast at the NLC-polymer interface and the local fluctuation of the NLC directors ensured a time scale much faster than the same observed for the polymer-air systems.
Collapse
Affiliation(s)
- Pritam Roy
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Rabibrata Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India. and Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Partho Sarathi Gooh Pattader
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India. and Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
4
|
Dwivedi S, Narayanan R, Chaudhary R, Mukherjee R, Atta A. Controlled Nanoscale Electrohydrodynamic Patterning Using Mesopatterned Template. ACS OMEGA 2018; 3:9781-9789. [PMID: 31459107 PMCID: PMC6644543 DOI: 10.1021/acsomega.8b01319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/09/2018] [Indexed: 06/09/2023]
Abstract
We report the path for a possible fabrication of an array of nanogrooves, by electro-hydrodynamic instability-mediated patterning of a thin polymer film using a patterned stamp with much larger features. Using a predictive computational model based on finite element method, we find the route to control the coalescence of initial instabilities that arise with the onset of spatially varying DC electric field generated through topographical patterns in the top electrode. These quasi-steady structures are shown to evolve with the electrostatic and geometric nature of the two-electrode system and are of a stable intermediate during the process of feature replication, under each electrode feature. We identify conditions to obtain nanogrooves for a range of operating conditions. Such simulations are likely to guide experiments, where simultaneous optimization of multiple parameters to fabricate features with lateral dimension smaller than that of the electrode patterns is challenging.
Collapse
Affiliation(s)
- Swarit Dwivedi
- Multiscale
Computational Fluid Dynamics Laboratory, Department of Chemical Engineering, and Instability
and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Raj Narayanan
- Multiscale
Computational Fluid Dynamics Laboratory, Department of Chemical Engineering, and Instability
and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rahul Chaudhary
- Multiscale
Computational Fluid Dynamics Laboratory, Department of Chemical Engineering, and Instability
and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rabibrata Mukherjee
- Multiscale
Computational Fluid Dynamics Laboratory, Department of Chemical Engineering, and Instability
and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Arnab Atta
- Multiscale
Computational Fluid Dynamics Laboratory, Department of Chemical Engineering, and Instability
and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
Kim T, Kim W. Viscous dewetting of metastable liquid films on substrates with microgrooves. J Colloid Interface Sci 2018. [DOI: 10.1016/j.jcis.2018.02.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Tian H, Shao J, Hu H, Wang L, Ding Y. Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16419-16427. [PMID: 27268135 DOI: 10.1021/acsami.6b03406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extensive applications of hierarchical structures in optoelectronics, micro/nanofluidics, energy conservation, etc., have led to the development of a variety of approaches for their fabrication, which can be categorized as bottom-up or top-down strategies. Current bottom-up and top-down strategies bear a complementary relationship to each other due to their processing characteristics, i.e., the advantages of one method correspond to the disadvantages of the other, and vice versa. Here we propose a novel method based on electrohydrodynamic structure formation, aimed at combining the main advantages of the two strategies. The method allows the fabrication of a hierarchically ordered structure with well-defined geometry and high mechanical durability on a polymer film, through a simple and low-cost process also suitable for mass-production. In this approach, upon application of an electric field between a template and a substrate sandwiching an air gap and a polymer film, the polymer is pulled toward the template and further flows into the template cavities, resulting in a hierarchical structure with primary and secondary patterns determined by electrohydrodynamic instability and by the template features, respectively. In this work, the fabrication of a hierarchical structure by electrohydrodynamic structure formation is studied using numerical simulations and experimental tests. The proposed method is then employed for the one-step fabrication of a hierarchical structure exhibiting a gradual transition in the periodicity of the primary structure using a slant template and a flat polymer film, which presents an excellent performance on controllable wettability.
Collapse
Affiliation(s)
- Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Hong Hu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Li Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| | - Yucheng Ding
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University , 28 Xianning Road, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Roy PK, Pant R, Nagarajan AK, Khare K. Mechanically Tunable Slippery Behavior on Soft Poly(dimethylsiloxane)-Based Anisotropic Wrinkles Infused with Lubricating Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5738-5743. [PMID: 27221199 DOI: 10.1021/acs.langmuir.6b00865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate a novel technique to fabricate mechanically tunable slippery surfaces using one-dimensional (anisotropic) elastic wrinkles. Such wrinkles show tunable topography (amplitude) on the application of mechanical strain. Following Nepenthes pitcher plants, lubricating fluid infused solid surfaces show excellent slippery behavior for test liquid drops. Therefore, combining the above two, that is, infusing suitable lubricating fluid on elastic wrinkles, would enable us to fabricate mechanically tunable slippery surfaces. Completely stretched (flat) wrinkles have uniform coating of lubricating fluid, whereas completely relaxed (full amplitude) wrinkles have most of the lubricating oil in the wrinkle grooves. Therefore, water drops on completely stretched surface show excellent slippery behavior, whereas on completely relaxed surface they show reduced slippery behavior. Therefore, continuous variation of wrinkle stretching provides reversibly tunable slippery behavior on such a system. Because the wrinkles are one-dimensional, they show anisotropic tunability of slippery behavior depending upon whether test liquid drops slip parallel or perpendicular to the wrinkles.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- Department of Physics, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Reeta Pant
- Department of Physics, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | | | - Krishnacharya Khare
- Department of Physics, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
8
|
Mukherjee R, Sharma A. Instability, self-organization and pattern formation in thin soft films. SOFT MATTER 2015; 11:8717-8740. [PMID: 26412507 DOI: 10.1039/c5sm01724f] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The free surface of a thin soft polymer film is often found to become unstable and self-organizes into various meso-scale structures. In this article we classify the instability of a thin polymer film into three broad categories, which are: category 1: instability of an ultra-thin (<100 nm) viscous film engendered by amplification of thermally excited surface capillary waves due to interfacial dispersive van der Waals forces; category 2: instability arising from the attractive inter-surface interactions between the free surface of a soft film exhibiting room temperature elasticity and another rigid surface in its contact proximity; and category 3: instability caused by an externally applied field such as an electric field or a thermal gradient, observed in both viscous and elastic films. We review the salient features of each instability class and highlight how characteristic length scales, feature morphologies, evolution pathways, etc. depend on initial properties such as film thickness, visco-elasticity (rheology), residual stress, and film preparation conditions. We emphasize various possible strategies for aligning and ordering of the otherwise isotropic structures by combining the essential concepts of bottom-up and top-down approaches. A perspective, including a possible future direction of research, novelty and limitations of the methods, particularly in comparison to the existing patterning techniques, is also presented for each setting.
Collapse
Affiliation(s)
- Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721 302, India.
| | - Ashutosh Sharma
- Department of Chemical Engineering and Nano-science Center, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
9
|
Nazaripoor H, Koch CR, Sadrzadeh M, Bhattacharjee S. Electrohydrodynamic patterning of ultra-thin ionic liquid films. SOFT MATTER 2015; 11:2193-2202. [PMID: 25639493 DOI: 10.1039/c4sm02477j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the electrohydrodynamic (EHD) patterning process, electrostatic destabilization of the air-polymer interface results in micro- and nano-size patterns in the form of raised formations called pillars. The polymer film in this process is typically assumed to behave like a perfect dielectric (PD) or leaky dielectric (LD). In this study, an electrostatic model is developed for the patterning of an ionic liquid (IL) polymer film. The IL model has a finite diffuse electric layer which overcomes the shortcoming of assuming infinitesimally large and small electric diffuse layers inherent in the PD and LD models respectively. The process of pattern formation is then numerically simulated by solving the weakly nonlinear thin film equation using finite difference with pseudo-staggered discretization and an adaptive time step. Initially, the pillar formation process in IL films is observed to be the same as that in PD films. Pillars initially form at random locations and their cross-section increases with time as the contact line expands on the top electrode. After the initial growth, for the same applied voltage and initial film thickness, the number of pillars on IL films is found to be significantly higher than that in PD films. The total number of pillars formed in 1 μm(2) area of the domain in an IL film is almost 5 times more than that in a similar PD film for the conditions simulated. In addition, the pillar structure size in IL films is observed to be more sensitive to initial film thickness compared to PD films.
Collapse
Affiliation(s)
- Hadi Nazaripoor
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G2G8.
| | | | | | | |
Collapse
|
10
|
|
11
|
Li H, Yu W, Zhang L, Liu Z, Brown KE, Abraham E, Cargill S, Tonry C, Patel MK, Bailey C, Desmulliez MPY. Simulation and modelling of sub-30 nm polymeric channels fabricated by electrostatic induced lithography. RSC Adv 2013. [DOI: 10.1039/c3ra40188j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Atta A, Crawford DG, Koch CR, Bhattacharjee S. Influence of electrostatic and chemical heterogeneity on the electric-field-induced destabilization of thin liquid films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12472-12485. [PMID: 21888320 DOI: 10.1021/la202759j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A numerical model for thin liquid film (<100 nm) drainage in the presence of an external electric field is developed. Long-wave theory is applied to approximate and simplify the governing equations. A spatiotemporal film morphology evolution equation thus obtained is then solved using a combination of finite difference to resolve the spatial dimensions and an adaptive time step ODE solver for the temporal propagation. The effect of fluid properties, namely, viscosity and surface tension, on the film drainage time is observed for a homogeneous electric field, which leads to random dewetting spots. Electrically heterogeneous fields, achieved by modeling electrodes with various periodic patterns, are explored to identify their effect on the drainage time and behavior. Finally, the chemical heterogeneity of the substrate is coupled with the periodic electric heterogeneity to understand the implications of combined heterogeneity. It is observed that the introduction of any heterogeneity results in faster drainage of the film when compared to that of the homogeneous field. In all cases, the thin film is drained, leaving submicrometer-scale structures at the interface. Well-controlled surface patterns are found on the application of periodic heterogeneity. This study effectively demonstrates the immense potential of electrically induced thin film drainage as a means for faster de-emulsification and for the creation of ordered submicrometer-scale surface patterns on soft materials.
Collapse
Affiliation(s)
- Arnab Atta
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
13
|
Verma A, Sharma A, Kulkarni GU. Ultrafast large-area micropattern generation in nonabsorbing polymer thin films by pulsed laser diffraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:758-765. [PMID: 21290600 DOI: 10.1002/smll.201001939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/22/2010] [Indexed: 05/28/2023]
Abstract
An ultrafast, parallel, and beyond-the-master micropatterning technique for ultrathin (30-400 nm) nonabsorbing polymer films by diffraction of laser light through a 2D periodic aperture is reported. The redistribution of laser energy absorbed by the substrate causes self-organization of polymer thin films in the form of wrinklelike surface relief structures caused by localized melting and freezing of the thin film. Unlike conventional laser ablation and laser writing processes, low laser fluence is employed to only passively swell the polymer as a pre-ablative process without loss of material, and without absorption/reaction with incident radiation. Self-organization in the thin polymer film, aided by the diffraction pattern, produces microstructures made up of thin raised lines. These regular microstructures have far more complex morphologies than the mask geometry and very narrow line widths that can be an order of magnitude smaller than the openings in the mask. The microstructure morphology is easily modulated by changing the film thickness, aperture size, and geometry, and by changing the diffraction pattern.
Collapse
Affiliation(s)
- Ankur Verma
- Department of Chemical Engineering and DST Unit on Nanoscience, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | | |
Collapse
|