1
|
Imamura K, Yokogawa D, Sato H. Recent developments and applications of reference interaction site model self-consistent field with constrained spatial electron density (RISM-SCF-cSED): A hybrid model of quantum chemistry and integral equation theory of molecular liquids. J Chem Phys 2024; 160:050901. [PMID: 38341702 DOI: 10.1063/5.0190116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/13/2024] Open
Abstract
The significance of solvent effects in electronic structure calculations has long been noted, and various methods have been developed to consider this effect. The reference interaction site model self-consistent field with constrained spatial electron density (RISM-SCF-cSED) is a hybrid model that combines the integral equation theory of molecular liquids with quantum chemistry. This method can consider the statistically convergent solvent distribution at a significantly lower cost than molecular dynamics simulations. Because the RISM theory explicitly considers the solvent structure, it performs well for systems where hydrogen bonds are formed between the solute and solvent molecules, which is a challenge for continuum solvent models. Taking advantage of being founded on the variational principle, theoretical developments have been made in calculating various properties and incorporating electron correlation effects. In this review, we organize the theoretical aspects of RISM-SCF-cSED and its distinctions from other hybrid methods involving integral equation theories. Furthermore, we carefully present its progress in terms of theoretical developments and recent applications.
Collapse
Affiliation(s)
- Kosuke Imamura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
2
|
Nishimoto Y, Battaglia S, Lindh R. Analytic First-Order Derivatives of (X)MS, XDW, and RMS Variants of the CASPT2 and RASPT2 Methods. J Chem Theory Comput 2022; 18:4269-4281. [PMID: 35699280 DOI: 10.1021/acs.jctc.2c00301] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crossings between states involve complex electronic structures, making the accurate characterization of the crossing point difficult. In this study, the analytic derivatives of three complete active space second-order perturbation theory (CASPT2) variants as well as an extension of the restricted active space (RASPT2) are developed. These variants are applied to locating minimum energy conical intersections. Our results demonstrate that the three CASPT2 variants predict qualitatively similar results, but a recently developed variant, the rotated multistate CASPT2 (RMS-CASPT2), is least sensitive to the number of states considered in the calculation. We demonstrate that CASPT2 and the reference self-consistent field calculations predict qualitatively different energetics and bond lengths.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|
3
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Liu F, Filatov M, Martínez TJ. Analytical derivatives of the individual state energies in ensemble density functional theory. II. Implementation on graphical processing units (GPUs). J Chem Phys 2021; 154:104108. [DOI: 10.1063/5.0041389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Fang Liu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Todd J. Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
5
|
Shimizu RY, Yanai T, Yokogawa D. Improved RISM-CASSCF Optimization via State-Average Treatment and Damping for Characterizing Excited Molecules in Solution with Multireference Perturbation Theory. J Chem Theory Comput 2020; 16:4865-4873. [PMID: 32603118 DOI: 10.1021/acs.jctc.9b01289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determination of excited states of near-infrared (NIR) bioimaging dyes is a challenging theoretical task because of their energy levels with a small gap and the presence of solvation. In the previous study, we showed that the development of the reference interaction site model coupled with the complete active space second-order perturbation theory, the RISM-CASPT2 method, and its extension with the density matrix renormalization group enabled high accuracy prediction of the photochemical properties of bioimaging-related fluorescent molecules in solution (Shimizu et al., J. Chem. Theory Comput. 2018, 14, 5673-5679). This method, however, has a technical issue in convergence of CASSCF optimization, which was encountered when applying the method to a wider variety of systems; thus, practical applications have been hindered. Here, we present an improved scheme of CASSCF optimization with and without the density matrix renormalization group treatment. Detailed derivations and analysis of the second-order orbital optimization scheme with the inclusion of solvation through RISM revealed the requirement of a correction term to the orbital Hessian matrix. As a practical approach, the state-average RISM-CASPT2 method with damping treatment for solvation is presented for improving the convergence of the calculation under reasonable computational cost. The improved scheme allows for performing accurate and numerically stable theoretical analysis of the bioimaging-related excited state with various types of solvation for a P═O-bridged rhodol derivative, which is recently highlighted as a promising photostable NIR dye molecule.
Collapse
Affiliation(s)
- Ryosuke Y Shimizu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Yokogawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
7
|
Park JW. Analytical Gradient Theory for Quasidegenerate N-Electron Valence State Perturbation Theory (QD-NEVPT2). J Chem Theory Comput 2019; 16:326-339. [DOI: 10.1021/acs.jctc.9b00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
8
|
Suda K, Sarinastiti A, Arifin, Kimura Y, Yokogawa D. Understanding Structural Changes through Excited-State Intramolecular Proton Transfer in 4′-N,N-Diethylamino-3-hydroxyflavone (DEAHF) in Solution Based on Quantum Chemical Calculations. J Phys Chem B 2019; 123:9872-9881. [DOI: 10.1021/acs.jpcb.9b07549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kayo Suda
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Asri Sarinastiti
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Arifin
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshifumi Kimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Okamoto D, Watanabe Y, Yoshida N, Nakano H. Implementation of state-averaged MCSCF method to RISM- and 3D-RISM-SCF schemes. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Park JW. Single-State Single-Reference and Multistate Multireference Zeroth-Order Hamiltonians in MS-CASPT2 and Conical Intersections. J Chem Theory Comput 2019; 15:3960-3973. [DOI: 10.1021/acs.jctc.9b00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
11
|
Marsili E, Farag MH, Yang X, De Vico L, Olivucci M. Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model. J Phys Chem A 2019; 123:1710-1719. [PMID: 30753077 DOI: 10.1021/acs.jpca.8b10010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, the potential energy surfaces of the penta-2,4-dieniminium cation have been investigated using several electronic structure methods. The resulting pool of geometrical, electronic, and energy data provides a suitable basis for the construction of a topographically correct analytical model of the molecule force field and, therefore, for a better understanding of this class of molecules, which includes the chromophore of visual pigments. In the present contribution, we report the construction of such a model for regions of the force field that drive the photochemical and thermal isomerization of the central double bound of the cation. While previous models included only two modes, it is here shown that the proposed three-mode model and corresponding set of parameters are able to reproduce the complex topographical and electronic structure features seen in electronically correlated data obtained at the XMCQDPT2//CASSCF/6-31G* level of theory.
Collapse
Affiliation(s)
- Emanuele Marsili
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy
| | - Marwa H Farag
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0482 , United States
| | - Xuchun Yang
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States and
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States and.,Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 , Université de Strasbourg-CNRS , F-67034 Strasbourg , France
| |
Collapse
|
12
|
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University , Evanston, IL, USA
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University , Evanston, IL, USA
| |
Collapse
|
13
|
Li C, Evangelista FA. Driven similarity renormalization group for excited states: A state-averaged perturbation theory. J Chem Phys 2018; 148:124106. [DOI: 10.1063/1.5019793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
14
|
Ishida T, Nanbu S, Nakamura H. Clarification of nonadiabatic chemical dynamics by the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in solutions. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1293399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Kieda RD, Dunkelberger AD, Case AS, Crim FF. Solvent Dependent Dynamics of Salicylidene Aniline in Binary Mixtures of Supercritical CO2 with 1-Propanol or Cyclohexane. J Phys Chem B 2017; 121:835-842. [DOI: 10.1021/acs.jpcb.6b05959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan D. Kieda
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Adam D. Dunkelberger
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Amanda S. Case
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - F. Fleming Crim
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
El-Tahawy MMT, Nenov A, Garavelli M. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. J Chem Theory Comput 2016; 12:4460-75. [DOI: 10.1021/acs.jctc.6b00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen M. T. El-Tahawy
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Chemistry
Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Université
de Lyon, Université Claude Bernard Lyon 1, ENS Lyon, Centre
Nationale de Recherche Scientifique, 46 allée d’Italie, 69007 Lyon Cedex 07, France
| |
Collapse
|
17
|
Sasaki S, Suzuki S, Sameera WMC, Igawa K, Morokuma K, Konishi GI. Highly Twisted N,N-Dialkylamines as a Design Strategy to Tune Simple Aromatic Hydrocarbons as Steric Environment-Sensitive Fluorophores. J Am Chem Soc 2016; 138:8194-206. [DOI: 10.1021/jacs.6b03749] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shunsuke Sasaki
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Satoshi Suzuki
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - W. M. C. Sameera
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazunobu Igawa
- Institute
for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Gen-ichi Konishi
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo 152-8552, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| |
Collapse
|
18
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
19
|
Aono S, Mori T, Sakaki S. 3D-RISM-MP2 Approach to Hydration Structure of Pt(II) and Pd(II) Complexes: Unusual H-Ahead Mode vs Usual O-Ahead One. J Chem Theory Comput 2016; 12:1189-206. [PMID: 26863511 DOI: 10.1021/acs.jctc.5b01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvation of transition metal complexes with water has been one of the fundamental topics in physical and coordination chemistry. In particular, Pt(II) complexes have recently attracted considerable interest for their relation to anticancer activity in cisplatin and its analogues, yet the interaction of the water molecule and the metal center has been obscured. The challenge from a theoretical perspective remains that both the microscopic solvation effect and the dynamical electron correlation (DEC) effect have to be treated simultaneously in a reasonable manner. In this work we derive the analytical gradient for the three-dimensional reference interaction site model Møller-Plesset second order (3D-RISM-MP2) free energy. On the basis of the three-regions 3D-RISM self-consistent field (SCF) method recently proposed by us, we apply a new layer of the Z-vector method to the CP-RISM equation as well as point-charge approximation to the derivatives with respect to the density matrix elements in the RISM-CPHF equation to remarkably reduce the computational cost. This method is applied to study the interaction of H2O with the d(8) square planar transition metal complexes in aqueous solution, trans-[Pt(II)Cl2(NH3)(glycine)] (1a), [Pt(II)(NH3)4](2+) (1b), [Pt(II)(CN)4](2-) (1c), and their Pd(II) analogues 2a, 2b, and 2c, respectively, to elucidate whether the usual H2O interaction through O atom (O-ahead mode) or unusual one through H atom (H-ahead mode) is stable in these complexes. We find that the interaction energy of the coordinating water and the transition metal complex changes little when switching from gas to aqueous phase, but the solvation free energy differs remarkably between the two interaction modes, thereby affecting the relative stability of the H-ahead and O-ahead modes. Particularly, in contrast to the expectation that the O-ahead mode is preferred due to the presence of positive charges in 1b, the H-ahead mode is also found to be more stable. The O-ahead mode is found to be more stable than the H-ahead one only in 2b. The energy decomposition analysis (EDA) at the 3D-RISM-MP2 level revealed that the O-ahead mode is stabilized by the electrostatic (ES) interaction, whereas the H-ahead one is mainly stabilized by the DEC effect. The ES interaction is also responsible for the difference between the Pd(II) and Pt(II) complexes; because the electrostatic potential is more negative along the z-axis in the Pt(II) complex than in the Pd(II) one, the O-ahead mode prefers the Pd(II) complexes, whereas the H-ahead becomes predominant in the Pt(II) complexes.
Collapse
Affiliation(s)
- Shinji Aono
- Fukui Institute for Fundamental Chemistry, Kyoto University , Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Toshifumi Mori
- Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan.,School of Physical Sciences, The Graduate University for Advanced Studies , Okazaki, Aichi 444-8585, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University , Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
20
|
Liu L, Liu J, Martinez TJ. Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model trans-Protonated Schiff Base. J Phys Chem B 2016; 120:1940-9. [DOI: 10.1021/acs.jpcb.5b09838] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Liu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| | - Jian Liu
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Todd J. Martinez
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| |
Collapse
|
21
|
Tuna D, Lefrancois D, Wolański Ł, Gozem S, Schapiro I, Andruniów T, Dreuw A, Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J Chem Theory Comput 2015; 11:5758-81. [PMID: 26642989 DOI: 10.1021/acs.jctc.5b00022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry.
Collapse
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Łukasz Wolański
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Samer Gozem
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504 , Strasbourg 67034, France
| | - Tadeusz Andruniów
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá de Siena , 53100 Siena, Italy
| |
Collapse
|
22
|
|
23
|
Ruiz-Barragan S, Morokuma K, Blancafort L. Conical Intersection Optimization Using Composed Steps Inside the ONIOM(QM:MM) Scheme: CASSCF:UFF Implementation with Microiterations. J Chem Theory Comput 2015; 11:1585-94. [DOI: 10.1021/acs.jctc.5b00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergi Ruiz-Barragan
- Institut
de Química Computacional i Catàlisis and Departament
de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Lluís Blancafort
- Institut
de Química Computacional i Catàlisis and Departament
de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
24
|
Minezawa N. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach. J Chem Phys 2014; 141:164118. [DOI: 10.1063/1.4899049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Noriyuki Minezawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
25
|
|
26
|
State-specific solvation effect on the intramolecular charge transfer reaction in solution: A linear-response free energy TDDFT method. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Aono S, Nakagaki M, Kurahashi T, Fujii H, Sakaki S. Theoretical Study of One-Electron Oxidized Mn(III)– and Ni(II)–Salen Complexes: Localized vs Delocalized Ground and Excited States in Solution. J Chem Theory Comput 2014; 10:1062-73. [DOI: 10.1021/ct401014p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shinji Aono
- Fukui
Institute for Fundamental ChemistryKyoto, University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Masayuki Nakagaki
- Fukui
Institute for Fundamental ChemistryKyoto, University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Takuya Kurahashi
- Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Fujii
- Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shigeyoshi Sakaki
- Fukui
Institute for Fundamental ChemistryKyoto, University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
28
|
Minezawa N. Excited-state free energy surfaces in solution: time-dependent density functional theory∕reference interaction site model self-consistent field method. J Chem Phys 2014; 138:244101. [PMID: 23822221 DOI: 10.1063/1.4811201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.
Collapse
Affiliation(s)
- Noriyuki Minezawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
29
|
Gozem S, Melaccio F, Lindh R, Krylov AI, Granovsky AA, Angeli C, Olivucci M. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods. J Chem Theory Comput 2013; 9:4495-506. [DOI: 10.1021/ct400460h] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Federico Melaccio
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, I-53100 Siena, Italy
| | - Roland Lindh
- Department
of Chemistry, Ångström, the Theoretical Chemistry Programme, POB 518, SE-751 20 Uppsala, Sweden
| | - Anna I. Krylov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | | | - Celestino Angeli
- Dipartimento
di Chimica, Università di Ferrara, via Borsari 46, I-44121 Ferrara, Italy
| | - Massimo Olivucci
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, I-53100 Siena, Italy
| |
Collapse
|
30
|
Hayaki S, Kimura Y, Sato H. Ab Initio Study on an Excited-State Intramolecular Proton-Transfer Reaction in Ionic Liquid. J Phys Chem B 2013; 117:6759-67. [DOI: 10.1021/jp311883f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seigo Hayaki
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8510,
Japan
| | - Yoshifumi Kimura
- Department of Chemical
Science
and Technology, Hosei University, Koganei,
184-8584, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8510,
Japan
| |
Collapse
|
31
|
Ruckenbauer M, Barbatti M, Müller T, Lischka H. Nonadiabatic photodynamics of a retinal model in polar and nonpolar environment. J Phys Chem A 2013; 117:2790-9. [PMID: 23470211 PMCID: PMC3619535 DOI: 10.1021/jp400401f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The nonadiabatic photodynamics of
the all-trans-2,4-pentadiene-iminium cation (protonated
Schiff base 3, PSB3) and
the all-trans-3-methyl-2,4-pentadiene-iminium cation
(MePSB3) were investigated in the gas phase and in polar (aqueous)
and nonpolar (n-hexane) solutions by means of surface
hopping using a multireference configuration-interaction (MRCI) quantum
mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for
radiationless deactivation to the ground state, and structural and
electronic parameters are compared. A strong influence of the polar
solvent on the location of the crossing seam, in particular in the
bond length alternation (BLA) coordinate, is found. Additionally,
inclusion of the polar solvent changes the orientation of the intersection
cone from sloped in the gas phase to peaked, thus enhancing considerably
its efficiency for deactivation of the molecular system to the ground
state. These factors cause, especially for MePSB3, a substantial decrease
in the lifetime of the excited state despite the steric inhibition
by the solvent.
Collapse
Affiliation(s)
- Matthias Ruckenbauer
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Muñoz-Losa A, Fdez. Galván I, Aguilar MA, Martín ME. Simultaneous Solvent and Counterion Effects on the Absorption Properties of a Model of the Rhodopsin Chromophore. J Chem Theory Comput 2013; 9:1548-56. [DOI: 10.1021/ct301090v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurora Muñoz-Losa
- Química
Física, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz,
06071, Spain
| | - Ignacio Fdez. Galván
- Química
Física, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz,
06071, Spain
| | - Manuel A. Aguilar
- Química
Física, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz,
06071, Spain
| | - M. Elena Martín
- Química
Física, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz,
06071, Spain
| |
Collapse
|
33
|
Ruiz-Barragan S, Robb MA, Blancafort L. Conical Intersection Optimization Based on a Double Newton–Raphson Algorithm Using Composed Steps. J Chem Theory Comput 2013; 9:1433-42. [DOI: 10.1021/ct301059t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergi Ruiz-Barragan
- Institut de Química Computacional
and Department de Química, University of Girona, 17071 Girona,
Spain
| | - Michael A. Robb
- Department of Chemistry,
Imperial
College, London SW7 2AZ, United Kingdom
| | - Lluís Blancafort
- Institut de Química Computacional
and Department de Química, University of Girona, 17071 Girona,
Spain
| |
Collapse
|
34
|
Mori T, Martínez TJ. Exploring the Conical Intersection Seam: The Seam Space Nudged Elastic Band Method. J Chem Theory Comput 2013; 9:1155-63. [DOI: 10.1021/ct300892t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshifumi Mori
- PULSE Institute and
Department
of Chemistry, Stanford University, Stanford, California 94305, United
States
- SLAC National Accelerator
Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd. J. Martínez
- PULSE Institute and
Department
of Chemistry, Stanford University, Stanford, California 94305, United
States
- SLAC National Accelerator
Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
35
|
Aono S, Hosoya T, Sakaki S. A 3D-RISM-SCF method with dual solvent boxes for a highly polarized system: application to 1,6-anhydrosugar formation reaction of phenyl α- and β-d-glucosides under basic conditions. Phys Chem Chem Phys 2013; 15:6368-81. [DOI: 10.1039/c3cp43892a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Sato H. A modern solvation theory: quantum chemistry and statistical chemistry. Phys Chem Chem Phys 2013; 15:7450-65. [DOI: 10.1039/c3cp50247c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Gozem S, Krylov AI, Olivucci M. Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods. J Chem Theory Comput 2012; 9:284-92. [DOI: 10.1021/ct300759z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Anna I. Krylov
- Department of Chemistry, University
of Southern California, Los Angeles, California 90089-0482, United
States
| | - Massimo Olivucci
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Chimica,
Università
di Siena, via De Gasperi 2, I-53100 Siena, Italy
| |
Collapse
|
38
|
Aono S, Sakaki S. Evaluation Procedure of Electrostatic Potential in 3D-RISM-SCF Method and Its Application to Hydrolyses of Cis- and Transplatin Complexes. J Phys Chem B 2012; 116:13045-62. [DOI: 10.1021/jp307879j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shinji Aono
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishiraki-cho, Takano, Sakyao-ku,
Kyoto606-8103, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishiraki-cho, Takano, Sakyao-ku,
Kyoto606-8103, Japan
| |
Collapse
|
39
|
Gozem S, Huntress M, Schapiro I, Lindh R, Granovsky AA, Angeli C, Olivucci M. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model. J Chem Theory Comput 2012; 8:4069-80. [DOI: 10.1021/ct3003139] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Mark Huntress
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Roland Lindh
- Department of Chemistry −
Ångström, the Theoretical Chemistry Programme, POB 518,
SE-751 20 Uppsala, Sweden
| | | | - Celestino Angeli
- Dipartimento di
Chimica, Università
di Ferrara, via Borsari 46, I-44121 Ferrara, Italy
| | - Massimo Olivucci
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Chimica, Università
di Siena, via De Gasperi 2, I-53100 Siena, Italy
| |
Collapse
|
40
|
Minezawa N, Gordon MS. Optimizing conical intersections of solvated molecules: The combined spin-flip density functional theory/effective fragment potential method. J Chem Phys 2012; 137:034116. [DOI: 10.1063/1.4734314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Muñoz-Losa A, Martín ME, Galván IF, Sánchez ML, Aguilar MA. Solvent Effects on the Radiative and Nonradiative Decay of a Model of the Rhodopsin Chromophore. J Chem Theory Comput 2011; 7:4050-9. [DOI: 10.1021/ct200295r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aurora Muñoz-Losa
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - M. Elena Martín
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - Ignacio Fdez. Galván
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - M. Luz Sánchez
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| | - Manuel A. Aguilar
- Química Física, Universidad de Extremadura, Avda. de Elvas s/n 06071 Badajoz, Spain
| |
Collapse
|
42
|
Cui G, Yang W. Conical intersections in solution: formulation, algorithm, and implementation with combined quantum mechanics/molecular mechanics method. J Chem Phys 2011; 134:204115. [PMID: 21639432 PMCID: PMC3124537 DOI: 10.1063/1.3593390] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/04/2011] [Indexed: 11/14/2022] Open
Abstract
The significance of conical intersections in photophysics, photochemistry, and photodissociation of polyatomic molecules in gas phase has been demonstrated by numerous experimental and theoretical studies. Optimization of conical intersections of small- and medium-size molecules in gas phase has currently become a routine optimization process, as it has been implemented in many electronic structure packages. However, optimization of conical intersections of small- and medium-size molecules in solution or macromolecules remains inefficient, even poorly defined, due to large number of degrees of freedom and costly evaluations of gradient difference and nonadiabatic coupling vectors. In this work, based on the sequential quantum mechanics and molecular mechanics (QM/MM) and QM/MM-minimum free energy path methods, we have designed two conical intersection optimization methods for small- and medium-size molecules in solution or macromolecules. The first one is sequential QM conical intersection optimization and MM minimization for potential energy surfaces; the second one is sequential QM conical intersection optimization and MM sampling for potential of mean force surfaces, i.e., free energy surfaces. In such methods, the region where electronic structures change remarkably is placed into the QM subsystem, while the rest of the system is placed into the MM subsystem; thus, dimensionalities of gradient difference and nonadiabatic coupling vectors are decreased due to the relatively small QM subsystem. Furthermore, in comparison with the concurrent optimization scheme, sequential QM conical intersection optimization and MM minimization or sampling reduce the number of evaluations of gradient difference and nonadiabatic coupling vectors because these vectors need to be calculated only when the QM subsystem moves, independent of the MM minimization or sampling. Taken together, costly evaluations of gradient difference and nonadiabatic coupling vectors in solution or macromolecules can be reduced significantly. Test optimizations of conical intersections of cyclopropanone and acetaldehyde in aqueous solution have been carried out successfully.
Collapse
Affiliation(s)
- Ganglong Cui
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
43
|
Aono S, Yamamoto T, Kato S. Solution reaction space Hamiltonian based on an electrostatic potential representation of solvent dynamics. J Chem Phys 2011; 134:144108. [DOI: 10.1063/1.3572057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|