1
|
Reinhardt A, Chew PY, Cheng B. A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals. J Chem Phys 2023; 159:184110. [PMID: 37962445 DOI: 10.1063/5.0173341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and convergence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is considerably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble substances.
Collapse
Affiliation(s)
- Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bingqing Cheng
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
2
|
Kournopoulos S, Santos MS, Ravipati S, Haslam AJ, Jackson G, Economou IG, Galindo A. The Contribution of the Ion-Ion and Ion-Solvent Interactions in a Molecular Thermodynamic Treatment of Electrolyte Solutions. J Phys Chem B 2022; 126:9821-9839. [PMID: 36395498 PMCID: PMC9720728 DOI: 10.1021/acs.jpcb.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Indexed: 11/19/2022]
Abstract
Developing molecular equations of state to treat electrolyte solutions is challenging due to the long-range nature of the Coulombic interactions. Seminal approaches commonly used are the mean spherical approximation (MSA) and the Debye-Hückel (DH) theory to account for ion-ion interactions and, often, the Born theory of solvation for ion-solvent interactions. We investigate the accuracy of the MSA and DH approaches using each to calculate the contribution of the ion-ion interactions to the chemical potential of NaCl in water, comparing these with newly computer-generated simulation data; the ion-ion contribution is isolated by selecting an appropriate primitive model with a Lennard-Jones force field to describe the solvent. A study of mixtures with different concentrations and ionic strengths reveals that the calculations from both MSA and DH theories are of similar accuracy, with the MSA approach resulting in marginally better agreement with the simulation data. We also demonstrate that the Born theory provides a good qualitative description of the contribution of the ion-solvent interactions; we employ an explicitly polar water model in these simulations. Quantitative agreement up to moderate salt concentrations and across the relevant range of temperature is achieved by adjusting the Born radius using simulation data of the free energy of solvation. We compute the radial and orientational distribution functions of the systems, thereby providing further insight on the differences observed between the theory and simulation. We thus provide rigorous benchmarks for use of the MSA, DH, and Born theories as perturbation approaches, which will be of value for improving existing models of electrolyte solutions, especially in the context of equations of state.
Collapse
Affiliation(s)
- Spiros Kournopoulos
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Mirella Simões Santos
- Laboratoire
de Chimie, École Normale Supérieure
de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Srikanth Ravipati
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Andrew J. Haslam
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Ioannis G. Economou
- Chemical
Engineering Program, Texas A&M University
at Qatar, Doha 23874, Qatar
| | - Amparo Galindo
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Cheng B. Computing chemical potentials of solutions from structure factors. J Chem Phys 2022; 157:121101. [DOI: 10.1063/5.0107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The chemical potential of a component in a solution is defined as the free energy change as the amount of the component changes. Computing this fundamental thermodynamic property from atomistic simulations is notoriously difficult, because of the convergence issues in free energy methods and finite size effects. This paper presents the so-called S0 method, which can be used to obtain chemical potentials from static structure factors computed from equilibrium molecular dynamics simulations under the isothermal-isobaric ensemble. This new method is demonstrated on the systems of binary Lennard-Jones particles, urea--water mixtures, a NaCl aqueous solution, and a high-pressure carbon-hydrogen mixture.
Collapse
|
4
|
Predicting the Solubility of Nonelectrolyte Solids Using a Combination of Molecular Simulation with the Solubility Parameter Method MOSCED: Application to the Wastewater Contaminants Monuron, Diuron, Atrazine and Atenolol. Processes (Basel) 2022. [DOI: 10.3390/pr10030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methods to predict the equilibrium solubility of nonelectrolyte solids are indispensable for early-stage process development, design, and feasibility studies. Conventional analytic methods typically require reference data to regress parameters, which may not be available or limited for novel systems. Molecular simulation is a promising alternative, but is computationally intensive. Here, we demonstrate the ability to use a small number of molecular simulation free energy calculations to generate reference data to regress model parameters for the analytical MOSCED (modified separation of cohesive energy density) model. The result is an efficient analytical method to predict the equilibrium solubility of nonelectrolyte solids. The method is demonstrated for the wastewater contaminants monuron, diuron, atrazine and atenolol. Predictions for monuron, diuron and atrazine are in reasonable agreement with MOSCED parameters regressed using experimental solubility data. Predictions for atenolol are inferior, suggesting a potential limitation in the adopted molecular models, or the solvents selected to generate the necessary reference data.
Collapse
|
5
|
DeFever RS, Maginn EJ. Computing the Liquidus of Binary Monatomic Salt Mixtures with Direct Simulation and Alchemical Free Energy Methods. J Phys Chem A 2021; 125:8498-8513. [PMID: 34543018 DOI: 10.1021/acs.jpca.1c06107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe and validate a free-energy-based method for computing the liquidus for binary solid-liquid phase diagrams in molecular simulations of monatomic salts. The method is demonstrated by calculating the liquidus for LiCl-KCl and MgCl2-KCl salt mixtures with the polarizable ion model (PIM). The free-energy-based method is cross-validated with direct coexistence simulations. Both techniques show excellent agreement with one another. Though the predictions of the PIM disagree with experiments, we use our free-energy-based approach to decouple the contributions of liquid mixture nonidealities and pure component solid-liquid equilibrium to the phase diagram. In both mixtures, the PIM accurately reproduces the liquid phase nonidealities but fails to predict the liquidus because it does not accurately predict the pure component melting temperature of LiCl or MgCl2.
Collapse
Affiliation(s)
- Ryan S DeFever
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Vinutha HA, Frenkel D. Computation of the chemical potential and solubility of amorphous solids. J Chem Phys 2021; 154:124502. [PMID: 33810672 DOI: 10.1063/5.0038955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using a recently developed technique to estimate the equilibrium free energy of glassy materials, we explore if equilibrium simulation methods can be used to estimate the solubility of amorphous solids. As an illustration, we compute the chemical potentials of the constituent particles of a two-component Kob-Andersen model glass former. To compute the chemical potential for different components, we combine the calculation of the overall free energy of the glass with a calculation of the chemical potential difference of the two components. We find that the standard method to compute chemical potential differences by thermodynamic integration yields not only a wide scatter in the chemical potential values, but also, more seriously, the average of the thermodynamic integration results is well above the extrapolated value for the supercooled liquid. However, we find that if we compute the difference in the chemical potential of the components with the non-equilibrium free-energy expression proposed by Jarzynski, we obtain a good match with the extrapolated value of the supercooled liquid. The extension of the Jarzynski method that we propose opens a potentially powerful route to compute the free-energy related equilibrium properties of glasses. We find that the solubility estimate of amorphous materials obtained from direct-coexistence simulations is only in fair agreement with the solubility prediction based on the chemical potential calculations of a hypothetical "well-equilibrated glass." In direct-coexistence simulations, we find that, in qualitative agreement with experiments, the amorphous solubility decreases with time and attains a low solubility value.
Collapse
Affiliation(s)
- H A Vinutha
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Abraham NS, Shirts MR. Statistical Mechanical Approximations to More Efficiently Determine Polymorph Free Energy Differences for Small Organic Molecules. J Chem Theory Comput 2020; 16:6503-6512. [PMID: 32877183 DOI: 10.1021/acs.jctc.0c00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methods to efficiently determine the relative stability of polymorphs of organic crystals are highly desired in crystal structure predictions (CSPs). Current methodologies include calculating the free energy of static lattice phonons, quasi-harmonic approximations (QHA), and computing the full thermodynamic cycle using replica exchange molecular dynamics (REMD). We found that 13 out of the 29 systems minimized from experimental crystal structures restructured to a lower energy minimum when heated and annealed using REMD, a phenomenon that QHA alone cannot capture. Here, we present a series of methods that are intermediate in accuracy and expense between QHA and computing the full thermodynamic cycle, which can save 42-80% of the computational cost and introduces, on this benchmark, a relatively small (0.16 ± 0.04 kcal/mol) error relative to the full thermodynamic cycle. In particular, a method that Boltzmann weights harmonic free energies from along the trajectory of REMD replica exchange appears to be an appropriate intermediate between QHA and the full thermodynamic cycle using MD when screening crystal polymorph stability.
Collapse
Affiliation(s)
- Nathan S Abraham
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Servis MJ, Martinez-Baez E, Clark AE. Hierarchical phenomena in multicomponent liquids: simulation methods, analysis, chemistry. Phys Chem Chem Phys 2020; 22:9850-9874. [PMID: 32154813 DOI: 10.1039/d0cp00164c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex, multicomponent, solutions have often been studied solely through the lens of specific applications of interest. Yet advances to both simulation methodologies (enhanced sampling, etc.) and analysis techniques (network analysis algorithms and others), are creating a trove of data that reveal transcending characteristics across vast compositional phase space. This perspective discusses technical considerations of the reliable and accurate simulations of complex solutions, followed by the advances to analysis algorithms that elucidate coupling of different length and timescale behavior (hierarchical phenomena). The different manifestations of hierarchical phenomena are presented across an array of solution environments, emphasizing fundamental and ongoing science questions. With a more advanced molecular understanding in hand, a quintessential application (solvent extraction) is discussed, where significant opportunities exist to re-imagine the technical scope of an established technology.
Collapse
Affiliation(s)
- Michael J Servis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
9
|
Qiao C, Zhang J, Jiang P, Zhao S, Song X, Yu J. A molecular approach for predicting phase diagrams of ternary aqueous saline solutions. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Zeron IM, Abascal JLF, Vega C. A force field of Li +, Na +, K +, Mg 2+, Ca 2+, Cl -, and SO 4 2- in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. J Chem Phys 2019; 151:134504. [PMID: 31594349 DOI: 10.1063/1.5121392] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this work, a force field for several ions in water is proposed. In particular, we consider the cations Li+, Na+, K+, Mg2+, and Ca2+ and the anions Cl- and SO4 2-. These ions were selected as they appear in the composition of seawater, and they are also found in biological systems. The force field proposed (denoted as Madrid-2019) is nonpolarizable, and both water molecules and sulfate anions are rigid. For water, we use the TIP4P/2005 model. The main idea behind this work is to further explore the possibility of using scaled charges for describing ionic solutions. Monovalent and divalent ions are modeled using charges of 0.85 and 1.7, respectively (in electron units). The model allows a very accurate description of the densities of the solutions up to high concentrations. It also gives good predictions of viscosities up to 3 m concentrations. Calculated structural properties are also in reasonable agreement with the experiment. We have checked that no crystallization occurred in the simulations at concentrations similar to the solubility limit. A test for ternary mixtures shows that the force field provides excellent performance at an affordable computer cost. In summary, the use of scaled charges, which could be regarded as an effective and simple way of accounting for polarization (at least to a certain extend), improves the overall description of ionic systems in water. However, for purely ionic systems, scaled charges will not adequately describe neither the solid nor the melt.
Collapse
Affiliation(s)
- I M Zeron
- Depto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J L F Abascal
- Depto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Depto. Química Física, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Galamba N, Paiva A, Barreiros S, Simões P. Solubility of Polar and Nonpolar Aromatic Molecules in Subcritical Water: The Role of the Dielectric Constant. J Chem Theory Comput 2019; 15:6277-6293. [DOI: 10.1021/acs.jctc.9b00505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuno Galamba
- Centre of Chemistry and Biochemistry and Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Susana Barreiros
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro Simões
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Hossain S, Kabedev A, Parrow A, Bergström CAS, Larsson P. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. Eur J Pharm Biopharm 2019; 137:46-55. [PMID: 30771454 PMCID: PMC6434319 DOI: 10.1016/j.ejpb.2019.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In this review we will discuss how computational methods, and in particular classical molecular dynamics simulations, can be used to calculate solubility of pharmaceutically relevant molecules and systems. To the extent possible, we focus on the non-technical details of these calculations, and try to show also the added value of a more thorough and detailed understanding of the solubilization process obtained by using computational simulations. Although the main focus is on classical molecular dynamics simulations, we also provide the reader with some insights into other computational techniques, such as the COSMO-method, and also discuss Flory-Huggins theory and solubility parameters. We hope that this review will serve as a valuable starting point for any pharmaceutical researcher, who has not yet fully explored the possibilities offered by computational approaches to solubility calculations.
Collapse
Affiliation(s)
- Shakhawath Hossain
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden.
| |
Collapse
|
13
|
Bellucci MA, Gobbo G, Wijethunga TK, Ciccotti G, Trout BL. Solubility of paracetamol in ethanol by molecular dynamics using the extended Einstein crystal method and experiments. J Chem Phys 2019; 150:094107. [PMID: 30849885 DOI: 10.1063/1.5086706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Li and co-workers [Li et al., J. Chem. Phys. 146, 214110 (2017)] have recently proposed a methodology to compute the solubility of molecular compounds from first principles, using molecular dynamics simulations. We revise and further explore their methodology that was originally applied to naphthalene in water at low concentration. In particular, we compute the solubility of paracetamol in an ethanol solution at ambient conditions. For the simulations, we used a force field that we previously reparameterized to reproduce certain thermodynamic properties of paracetamol but not explicitly its solubility in ethanol. In addition, we have determined the experimental solubility by performing turbidity measurements using a Crystal16 over a range of temperatures. Our work serves a dual purpose: (i) methodologically, we clarify how to compute, with a relatively straightforward procedure, the solubility of molecular compounds and (ii) applying this procedure, we show that the solubility predicted by our force field (0.085 ± 0.014 in mole ratio) is in good agreement with the experimental value obtained from our experiments and those reported in the literature (average 0.0585 ± 0.004), considering typical deviations for predictions from first principle methods. The good agreement between the experimental and the calculated solubility also suggests that the method used to reparameterize the force field can be used as a general strategy to optimize force fields for simulations in solution.
Collapse
Affiliation(s)
- Michael A Bellucci
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gianpaolo Gobbo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tharanga K Wijethunga
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Bernhardt L Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Saravi SH, Ravichandran A, Khare R, Chen CC. Bridging two-liquid theory with molecular simulations for electrolytes: An investigation of aqueous NaCl solution. AIChE J 2019. [DOI: 10.1002/aic.16521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sina H. Saravi
- Dept. of Chemical Engineering; Texas Tech University; Lubbock TX 79409
| | | | - Rajesh Khare
- Dept. of Chemical Engineering; Texas Tech University; Lubbock TX 79409
| | - Chau-Chyun Chen
- Dept. of Chemical Engineering; Texas Tech University; Lubbock TX 79409
| |
Collapse
|
15
|
Duarte Ramos Matos G, Mobley DL. Challenges in the use of atomistic simulations to predict solubilities of drug-like molecules. F1000Res 2019; 7:686. [PMID: 30109026 PMCID: PMC6069752 DOI: 10.12688/f1000research.14960.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Solubility is a physical property of high importance to the pharmaceutical industry, the prediction of which for potential drugs has so far been a hard task. We attempted to predict the solubility of acetylsalicylic acid (ASA) by estimating the absolute chemical potentials of its most stable polymorph and of solutions with different concentrations of the drug molecule. Methods: Chemical potentials were estimated from all-atom molecular dynamics simulations. We used the Einstein molecule method (EMM) to predict the absolute chemical potential of the solid and solvation free energy calculations to predict the excess chemical potentials of the liquid-phase systems. Results: Reliable estimations of the chemical potentials for the solid and for a single ASA molecule using the EMM required an extremely large number of intermediate states for the free energy calculations, meaning that the calculations were extremely demanding computationally. Despite the computational cost, however, the computed value did not agree well with the experimental value, potentially due to limitations with the underlying energy model. Perhaps better values could be obtained with a better energy model; however, it seems likely computational cost may remain a limiting factor for use of this particular approach to solubility estimation. Conclusions: Solubility prediction of drug-like solids remains computationally challenging, and it appears that both the underlying energy model and the computational approach applied may need improvement before the approach is suitable for routine use.
Collapse
Affiliation(s)
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, Irvine, California, USA.,Departments of Pharmaceutical Sciences and Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Espinosa JR, Wand CR, Vega C, Sanz E, Frenkel D. Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water. J Chem Phys 2018; 149:224501. [PMID: 30553262 DOI: 10.1063/1.5054056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a numerical study of the relative solubility of cholesterol in octanol and water. Our calculations allow us to compare the accuracy of the computed values of the excess chemical potential of cholesterol for several widely used water models (SPC, TIP3P, and TIP4P). We compute the excess solvation free energies by means of a cavity-based method [L. Li et al., J. Chem. Phys. 146(21), 214110 (2017)] which allows for the calculation of the excess chemical potential of a large molecule in a dense solvent phase. For the calculation of the relative solubility ("partition coefficient," log10 P o / w ) of cholesterol between octanol and water, we use the OPLS/AA force field in combination with the SPC, TIP3P, and TIP4P water models. For all water models studied, our results reproduce the experimental observation that cholesterol is less soluble in water than in octanol. While the experimental value for the partition coefficient is log10 P o / w = 3.7, SPC, TIP3P, and TIP4P give us a value of log10 P o / w = 4.5, 4.6, and 2.9, respectively. Therefore, although the results for the studied water models in combination with the OPLS/AA force field are acceptable, further work to improve the accuracy of current force fields is needed.
Collapse
Affiliation(s)
- Jorge R Espinosa
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Charlie R Wand
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Long GE, Dhakal P, Redeker BN, Paluch AS. Using limiting activity coefficients to efficiently evaluate the ability of fixed-charge force fields to model miscible water plus cosolvent mixtures. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1531399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Garrett E. Long
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Pratik Dhakal
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Bryce N. Redeker
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Andrew S. Paluch
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
18
|
Li L, Totton T, Frenkel D. Computational methodology for solubility prediction: Application to sparingly soluble organic/inorganic materials. J Chem Phys 2018; 149:054102. [PMID: 30089373 DOI: 10.1063/1.5040366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The solubility of a crystalline material can be estimated from the absolute free energy of the solid and the excess solvation free energy. In the earlier work, we presented a general-purpose molecular-dynamics-based methodology enabling solubility predictions of crystalline compounds, yielding accurate estimates of the aqueous solubilities of naphthalene at various pressures and temperatures. In the present work, we investigate a number of prototypical complex materials, including phenanthrene, calcite, and aragonite over a range of temperatures and pressures. Our results provide stronger evidence for the power of the methodology for universal solubility predictions.
Collapse
Affiliation(s)
- Lunna Li
- Department of Chemistry, University of Cambridge, Cambridgeshire CB2 1EW, United Kingdom
| | - Tim Totton
- BP Exploration Operating Co. Ltd., Sunbury-on-Thames TW16 7LN, United Kingdom
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Cambridgeshire CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Soria GD, Espinosa JR, Ramirez J, Valeriani C, Vega C, Sanz E. A simulation study of homogeneous ice nucleation in supercooled salty water. J Chem Phys 2018; 148:222811. [DOI: 10.1063/1.5008889] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Guiomar D. Soria
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R. Espinosa
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Ramirez
- Departamento de Ingenieria Quimica Industrial y Medio Ambiente, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, 28006 Madrid, Spain
| | - Chantal Valeriani
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Fisica Aplicada I, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
20
|
Moučka F, Kolafa J, Lísal M, Smith WR. Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl2, antarcticite, and sinjarite. J Chem Phys 2018; 148:222832. [DOI: 10.1063/1.5024212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Filip Moučka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of the CAS, v. v. i., 165 02 Prague 6-Suchdol, Czech Republic
- Department of Physics, Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6, Czech Republic
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of the CAS, v. v. i., 165 02 Prague 6-Suchdol, Czech Republic
- Department of Physics, Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Li L, Totton T, Frenkel D. Computational methodology for solubility prediction: Application to the sparingly soluble solutes. J Chem Phys 2018; 146:214110. [PMID: 28595415 DOI: 10.1063/1.4983754] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The solubility of a crystalline substance in the solution can be estimated from its absolute solid free energy and excess solvation free energy. Here, we present a numerical method, which enables convenient solubility estimation of general molecular crystals at arbitrary thermodynamic conditions where solid and solution can coexist. The methodology is based on standard alchemical free energy methods, such as thermodynamic integration and free energy perturbation, and consists of two parts: (1) systematic extension of the Einstein crystal method to calculate the absolute solid free energies of molecular crystals at arbitrary temperatures and pressures and (2) a flexible cavity method that can yield accurate estimates of the excess solvation free energies. As an illustration, via classical Molecular Dynamic simulations, we show that our approach can predict the solubility of OPLS-AA-based (Optimized Potentials for Liquid Simulations All Atomic) naphthalene in SPC (Simple Point Charge) water in good agreement with experimental data at various temperatures and pressures. Because the procedure is simple and general and only makes use of readily available open-source software, the methodology should provide a powerful tool for universal solubility prediction.
Collapse
Affiliation(s)
- Lunna Li
- Department of Chemistry, University of Cambridge, Cambridgeshire CB2 1EW, United Kingdom
| | - Tim Totton
- BP Exploration Operating Co. Ltd., Sunbury-on-Thames TW16 7LN, United Kingdom
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Cambridgeshire CB2 1EW, United Kingdom
| |
Collapse
|
22
|
Bergström CAS, Larsson P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int J Pharm 2018; 540:185-193. [PMID: 29421301 PMCID: PMC5861307 DOI: 10.1016/j.ijpharm.2018.01.044] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
In this review we will discuss recent advances in computational prediction of solubility in water-based solvents. Our focus is set on recent advances in predictions of biorelevant solubility in media mimicking the human intestinal fluids and on new methods to predict the thermodynamic cycle rather than prediction of solubility in pure water through quantitative structure property relationships (QSPR). While the literature is rich in QSPR models for both solubility and melting point, a physicochemical property strongly linked to the solubility, recent advances in the modelling of these properties make use of theory and computational simulations to better predict these properties or processes involved therein (e.g. solid state crystal lattice packing, dissociation of molecules from the lattice and solvation). This review serves to provide an update on these new approaches and how they can be used to more accurately predict solubility, and also importantly, inform us on molecular interactions and processes occurring during drug dissolution and solubilisation.
Collapse
Affiliation(s)
- Christel A S Bergström
- Department of Pharmacy, Uppsala University, Biomedical Centre P.O. Box 580, SE-751 23 Uppsala, Sweden.
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Biomedical Centre P.O. Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
23
|
Benavides AL, Portillo MA, Chamorro VC, Espinosa JR, Abascal JLF, Vega C. A potential model for sodium chloride solutions based on the TIP4P/2005 water model. J Chem Phys 2017; 147:104501. [DOI: 10.1063/1.5001190] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. L. Benavides
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, CP 37150 León, Mexico
| | - M. A. Portillo
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - V. C. Chamorro
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. R. Espinosa
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. L. F. Abascal
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C. Vega
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
24
|
Noroozi J, Paluch AS. Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study. J Phys Chem B 2017; 121:1660-1674. [DOI: 10.1021/acs.jpcb.6b12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javad Noroozi
- Department
of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Andrew S. Paluch
- Department
of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
25
|
Phifer JR, Cox CE, da Silva LF, Nogueira GG, Barbosa AKP, Ley RT, Bozada SM, O’Loughlin EJ, Paluch AS. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1284356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jeremy R. Phifer
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Courtney E. Cox
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Larissa Ferreira da Silva
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
- Departamento de Engenharia Química, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Gabriel Gonçalves Nogueira
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
- Departamento de Engenharia Química, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Ana Karolyne Pereira Barbosa
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ryan T. Ley
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Samantha M. Bozada
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | | | - Andrew S. Paluch
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
26
|
Espinosa JR, Young JM, Jiang H, Gupta D, Vega C, Sanz E, Debenedetti PG, Panagiotopoulos AZ. On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures. J Chem Phys 2016; 145:154111. [DOI: 10.1063/1.4964725] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. R. Espinosa
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J. M. Young
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - H. Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - D. Gupta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - C. Vega
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E. Sanz
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - P. G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A. Z. Panagiotopoulos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Benavides AL, Aragones JL, Vega C. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route. J Chem Phys 2016; 144:124504. [PMID: 27036458 DOI: 10.1063/1.4943780] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.
Collapse
Affiliation(s)
- A L Benavides
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J L Aragones
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
28
|
Phifer JR, Solomon KJ, Young KL, Paluch AS. Computing MOSCED parameters of nonelectrolyte solids with electronic structure methods in SMD and SM8 continuum solvents. AIChE J 2016. [DOI: 10.1002/aic.15413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jeremy R. Phifer
- Dept. of Chemical, Paper and Biomedical Engineering; Miami University; Oxford OH 45056
| | - Kimberly J. Solomon
- Dept. of Chemical, Paper and Biomedical Engineering; Miami University; Oxford OH 45056
| | - Kayla L. Young
- Dept. of Chemical, Paper and Biomedical Engineering; Miami University; Oxford OH 45056
| | - Andrew S. Paluch
- Dept. of Chemical, Paper and Biomedical Engineering; Miami University; Oxford OH 45056
| |
Collapse
|
29
|
Ley RT, Fuerst GB, Redeker BN, Paluch AS. Developing a Predictive Form of MOSCED for Nonelectrolyte Solids Using Molecular Simulation: Application to Acetanilide, Acetaminophen, and Phenacetin. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan T. Ley
- Department
of Chemical, Paper
and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Georgia B. Fuerst
- Department
of Chemical, Paper
and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Bryce N. Redeker
- Department
of Chemical, Paper
and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Andrew S. Paluch
- Department
of Chemical, Paper
and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
30
|
Nezbeda I, Moučka F, Smith WR. Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1165296] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ivo Nezbeda
- Faculty of Science, J.E. Purkinje University, Ústí nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals, Academy of Sciences, Prague 6, Czech Republic
| | - Filip Moučka
- Faculty of Science, J.E. Purkinje University, Ústí nad Labem, Czech Republic
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
31
|
Solvation free energy and solubility of acetaminophen and ibuprofen in supercritical carbon dioxide: Impact of the solvent model. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Mester Z, Panagiotopoulos AZ. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. J Chem Phys 2015; 142:044507. [PMID: 25637995 DOI: 10.1063/1.4906320] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.
Collapse
Affiliation(s)
- Zoltan Mester
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
33
|
Mester Z, Panagiotopoulos AZ. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. J Chem Phys 2015; 143:044505. [DOI: 10.1063/1.4926840] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zoltan Mester
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
34
|
Manzanilla-Granados HM, Saint-Martín H, Fuentes-Azcatl R, Alejandre J. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl. J Phys Chem B 2015; 119:8389-96. [DOI: 10.1021/acs.jpcb.5b00740] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Héctor M. Manzanilla-Granados
- Escuela Superior de Cómputo del I.P.N, Av. Juan de Dios Bátiz s/n Miguel Othón de Mendizabal, 07738 México, D.F., México
| | - Humberto Saint-Martín
- Instituto de Ciencias
Físicas, Universidad Nacional Autónoma de México, Apdo.
Postal 48-3, Cuernavaca, Morelos C.P. 62251, México
| | - Raúl Fuentes-Azcatl
- Instituto de Física, Universidade Federal do Río Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS Brazil
| | - José Alejandre
- Departamento
de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340 México, D.F., México
| |
Collapse
|
35
|
Valiskó M, Boda D. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions. J Chem Phys 2015; 140:234508. [PMID: 24952553 DOI: 10.1063/1.4883742] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, "The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations," J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of "solvated ionic radius" assumed by earlier studies.
Collapse
Affiliation(s)
- Mónika Valiskó
- Department of Physical Chemistry, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| | - Dezső Boda
- Department of Physical Chemistry, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| |
Collapse
|
36
|
Moučka F, Nezbeda I, Smith WR. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields. J Chem Theory Comput 2015; 11:1756-64. [DOI: 10.1021/acs.jctc.5b00018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Filip Moučka
- Faculty
of Science, J. E. Purkinje University, 400 96 Ústí
nad Labem, Czech Republic
| | - Ivo Nezbeda
- Faculty
of Science, J. E. Purkinje University, 400 96 Ústí
nad Labem, Czech Republic
- Institute
of Chemical Process Fundamentals, Academy of Sciences, 165 02 Prague 6, Czech Republic
| | - William R. Smith
- Department
of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Faculty
of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
37
|
Wiebe H, Louwersheimer J, Weinberg N. Molecular dynamic studies of the solubility of sodium chloride: fast calculations using seed crystalline cluster probe. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1011247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
|
39
|
Paluch AS, Parameswaran S, Liu S, Kolavennu A, Mobley DL. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation. J Chem Phys 2015; 142:044508. [PMID: 25637996 PMCID: PMC4312346 DOI: 10.1063/1.4906491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.
Collapse
Affiliation(s)
- Andrew S Paluch
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, USA
| | - Sreeja Parameswaran
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Shuai Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697, USA
| | - Anasuya Kolavennu
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
40
|
Kobayashi K, Liang Y, Sakka T, Matsuoka T. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water. J Chem Phys 2014; 140:144705. [DOI: 10.1063/1.4870417] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
41
|
Moučka F, Nezbeda I, Smith WR. Molecular Force Field Development for Aqueous Electrolytes: 1. Incorporating Appropriate Experimental Data and the Inadequacy of Simple Electrolyte Force Fields Based on Lennard-Jones and Point Charge Interactions with Lorentz–Berthelot Rules. J Chem Theory Comput 2013; 9:5076-85. [DOI: 10.1021/ct4006008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filip Moučka
- Faculty
of Science, University of Ontario Institute of Technology, Oshawa, ON
L1H7K4, Canada
- Faculty
of Science, J. E. Purkinje University, 400 96 Ústí n. Lab., Czech Republic
| | - Ivo Nezbeda
- Faculty
of Science, J. E. Purkinje University, 400 96 Ústí n. Lab., Czech Republic
- E. Hála
Laboratory of Thermodynamics, Institute of
Chemical Process Fundamentals, Academy of Sciences, 165 02 Prague 6, Czech Republic
| | - William R. Smith
- Faculty
of Science, University of Ontario Institute of Technology, Oshawa, ON
L1H7K4, Canada
| |
Collapse
|
42
|
Moučka F, Nezbeda I, Smith WR. Molecular simulation of aqueous electrolytes: Water chemical potential results and Gibbs-Duhem equation consistency tests. J Chem Phys 2013; 139:124505. [DOI: 10.1063/1.4821153] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Paluch AS, Maginn EJ. Efficient Estimation of the Equilibrium Solution-Phase Fugacity of Soluble Nonelectrolyte Solids in Binary Solvents by Molecular Simulation. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401295j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew S. Paluch
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | | |
Collapse
|
44
|
Moučka F, Nezbeda I, Smith WR. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations. J Chem Phys 2013; 138:154102. [DOI: 10.1063/1.4801322] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
45
|
Paluch AS, Maginn EJ. Predicting the Solubility of Solid Phenanthrene: A Combined Molecular Simulation and Group Contribution Approach. AIChE J 2013. [DOI: 10.1002/aic.14020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Andrew S. Paluch
- Dept. of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame; IN; 46556
| | - Edward J. Maginn
- Dept. of Chemical and Biomolecular Engineering; University of Notre Dame; Notre Dame; IN; 46556
| |
Collapse
|
46
|
Paluch AS, Vitter CA, Shah JK, Maginn EJ. A comparison of the solvation thermodynamics of amino acid analogues in water, 1-octanol and 1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids by molecular simulation. J Chem Phys 2012; 137:184504. [DOI: 10.1063/1.4765097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
47
|
Jämbeck JPM, Mocci F, Lyubartsev AP, Laaksonen A. Partial atomic charges and their impact on the free energy of solvation. J Comput Chem 2012; 34:187-97. [DOI: 10.1002/jcc.23117] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/10/2022]
|
48
|
Aragones JL, Sanz E, Valeriani C, Vega C. Calculation of the melting point of alkali halides by means of computer simulations. J Chem Phys 2012; 137:104507. [DOI: 10.1063/1.4745205] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
Paluch AS, Jayaraman S, Shah JK, Maginn EJ. Erratum: “A method for computing the solubility limit of solids: Application to sodium chloride in water and alcohols” [J. Chem. Phys. 133, 124504 (2010)]. J Chem Phys 2012. [DOI: 10.1063/1.4738193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Aragones JL, Sanz E, Vega C. Solubility of NaCl in water by molecular simulation revisited. J Chem Phys 2012; 136:244508. [DOI: 10.1063/1.4728163] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|