1
|
Matos IA, Alves AC, Tereso AP. Lean Principles in an Operating Room Environment. JOURNAL OF HEALTH MANAGEMENT 2016. [DOI: 10.1177/0972063416637716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article presents the implementation of lean principles using action research, in a health-care environment, focused on the operating room. Lean production has been successively adopted in the services sector because its implementation improves process efficiency and resources management. Additionally, a culture of continuous improvement search is created in the organization, a culture focused on the client (patient) that creates value for the client. This implies a change of the paradigm that prevails in some countries where the doctor is viewed as the ‘client’. The action research described in this article promoted lean principles in an operating room and support warehouses. The results were as follows: stocks management improved, warehouse spaces reduced by 20 to 25 per cent, operating room areas were better organized, equipment and obsolete surgical material were eliminated, equipment management was improved and operating times were reduced. Furthermore, it was necessary to create productivity indicators for the operating room to improve visual management and train staff for adopting a lean behaviour and attitude. This action research describes a trend in health care that implies an organizational change of culture and paradigm.
Collapse
Affiliation(s)
| | - Anabela Carvalho Alves
- ALGORITMI Center, Department of Production and Systems, University of Minho, School of Engineering CGIT Research Center, Campus of Azurém, Guimarães, Portugal
| | - Anabela Pereira Tereso
- ALGORITMI Center, Department of Production and Systems, University of Minho, School of Engineering CGIT Research Center, Campus of Azurém, Guimarães, Portugal
| |
Collapse
|
2
|
Liu JX, Milbourne T, Bitter M, Delgado-Aparicio L, Dominguez A, Efthimion PC, Hill KW, Kramer GJ, Kung C, Kubota S, Kasparek W, Lu J, Pablant NA, Park H, Tobias B. Alternative optical concept for electron cyclotron emission imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:11D802. [PMID: 25430215 DOI: 10.1063/1.4884902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.
Collapse
Affiliation(s)
- J X Liu
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - T Milbourne
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M Bitter
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | | | - A Dominguez
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - P C Efthimion
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - K W Hill
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - G J Kramer
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - C Kung
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - S Kubota
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - W Kasparek
- Department of Electrical Engineering, University of Stuttgart, Stuttgart, Germany
| | - J Lu
- Department of Physics, Chongqing University, Chongqing 400044, China
| | - N A Pablant
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - H Park
- Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
| | - B Tobias
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| |
Collapse
|
3
|
Khvostichenko DS, Kondrashkina E, Perry SL, Pawate AS, Brister K, Kenis PJ. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases. Analyst 2013; 138:5384-95. [PMID: 23882463 PMCID: PMC3800112 DOI: 10.1039/c3an01174g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipidic mesophases are a class of highly ordered soft materials that form when certain lipids are mixed with water. Understanding the relationship between the composition and the microstructure of mesophases is necessary for fundamental studies of self-assembly in amphiphilic systems and for applications, such as the crystallization of membrane proteins. However, the laborious formulation protocol for highly viscous mesophases and the large amounts of material required for sample formulation are significant obstacles in such studies. Here we report a microfluidic platform that facilitates investigations of the phase behavior of mesophases by reducing sample consumption 300-fold, and automating and parallelizing sample formulation. The mesophases were formulated on-chip using less than 80 nL of material per sample and their microstructure was analyzed in situ using small-angle X-ray scattering (SAXS). The 220 μm-thick X-ray compatible platform was comprised of thin polydimethylsiloxane (PDMS) layers sandwiched between cyclic olefin copolymer (COC) sheets. Uniform mesophases were prepared using an active on-chip mixing strategy coupled with periodic cooling of the sample to reduce viscosity. We validated the platform by preparing and analyzing mesophases of the lipid monoolein (MO) mixed with aqueous solutions of different concentrations of β-octylglucoside (βOG), a detergent frequently used in membrane protein crystallization. Four samples were prepared in parallel on chip, by first metering and automatically diluting βOG to obtain detergent solutions of different concentration, then metering MO, and finally mixing by actuation of pneumatic valves. Integration of detergent dilution and subsequent mixing significantly reduced the number of manual steps needed for sample preparation. Three different types of mesophases typical for MO were successfully identified in SAXS data from on-chip samples. Microstructural parameters of identical samples formulated in different chips showed excellent agreement. Phase behavior of samples on-chip (~80 nL per sample) corresponded well with that of samples prepared via the traditional coupled-syringe method using at least two orders of magnitude more material ("off-chip", 35-40 μL per sample), further validating the applicability of the microfluidic platform for on-chip characterization of mesophase microstructure.
Collapse
Affiliation(s)
- Daria S. Khvostichenko
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA. Tel:+1-217-265-0523
| | - Elena Kondrashkina
- Northwestern University, Synchrotron Research Center, LS-CAT, Argonne, IL, USA. Fax: +1-630-252-4664; Tel: +1-630-343-9532
| | - Sarah L. Perry
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA. Tel:+1-217-265-0523
| | - Ashtamurthy S. Pawate
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA. Tel:+1-217-265-0523
| | - Keith Brister
- Northwestern University, Synchrotron Research Center, LS-CAT, Argonne, IL, USA. Fax: +1-630-252-4664; Tel: +1-630-343-9532
| | - Paul J.A. Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA. Tel:+1-217-265-0523
| |
Collapse
|
4
|
Yun G, Lee W, Choi M, Lee J, Choe G, Park H, Domier C, Luhmann N, Donné AJH, Lee J, Park S, Joung M, Bae Y, Jeon Y, Yoon S, KSTAR team. Visualization of core and edge MHD instabilities in 2D using ECEI. EPJ WEB OF CONFERENCES 2012. [DOI: 10.1051/epjconf/20123203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
5
|
Yun GS, Lee W, Choi MJ, Kim JB, Park HK, Domier CW, Tobias B, Liang T, Kong X, Luhmann NC, Donné AJH. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:10D930. [PMID: 21033958 DOI: 10.1063/1.3483209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.
Collapse
Affiliation(s)
- G S Yun
- Pohang University of Science and Technology, Pohang, Gyungbuk 790-784, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|