1
|
Taklimi NA, Ferrari F, Piątek MR, Tubiana L. Thermal properties of knotted block copolymer rings with charged monomers subjected to short-range interactions. Phys Rev E 2023; 108:034503. [PMID: 37849145 DOI: 10.1103/physreve.108.034503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/19/2023] [Indexed: 10/19/2023]
Abstract
The thermal properties of coarse-grained knotted copolymer rings fluctuating in a highly screening solution are investigated on a simple cubic lattice using the Wang-Landau Monte Carlo algorithm. The rings contain two kinds of monomers A and B with opposite charges that are subjected to short-range interactions. In view of possible applications in medicine and the construction of intelligent materials, it is shown that the behavior of copolymer rings can be tuned by changing both their monomer configuration and topology. We find several phase transitions depending on the monomer distribution. They include the expansion and collapse of the knotted polymer as well as rearrangements leading to metastable states. The temperatures at which these phase transitions are occurring and other features can be tuned by changing the topology of the system. The processes underlying the observed transitions are identified. In knots formed by diblock copolymers, two different classes of behaviors are detected depending on whether there is an excess of monomers of one kind or not. Moreover, we find that the most stable compact states are formed by copolymers in which units of two A monomers are alternated by units of two B monomers. Remarkably, these compact states are in a lamellar phase. The transition from the lamellar to the expanded state produces in the specific heat capacity a narrow and high peak that is centered at temperatures that are much higher than those of the peaks observed in all other monomer distributions.
Collapse
Affiliation(s)
- Neda Abbasi Taklimi
- CASA* and Institute of Physics, University of Szczecin, 70-453 Szczecin, Poland
| | - Franco Ferrari
- CASA* and Institute of Physics, University of Szczecin, 70-453 Szczecin, Poland
| | | | - Luca Tubiana
- Physics Department, University of Trento, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| |
Collapse
|
2
|
Piskulich ZA, Thompson WH. On the temperature dependence of liquid structure. J Chem Phys 2020; 152:011102. [DOI: 10.1063/1.5135932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
3
|
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Oluwaseun O. Mesele
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Piskulich ZA, Mesele OO, Thompson WH. Expanding the calculation of activation volumes: Self-diffusion in liquid water. J Chem Phys 2018; 148:134105. [DOI: 10.1063/1.5023420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
5
|
Piskulich ZA, Mesele OO, Thompson WH. Removing the barrier to the calculation of activation energies: Diffusion coefficients and reorientation times in liquid water. J Chem Phys 2017; 147:134103. [DOI: 10.1063/1.4997723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
6
|
Mesele OO, Thompson WH. Removing the barrier to the calculation of activation energies. J Chem Phys 2016; 145:134107. [DOI: 10.1063/1.4964284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
7
|
Jungblut S, Dellago C. Pathways to self-organization: Crystallization via nucleation and growth. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:77. [PMID: 27498980 DOI: 10.1140/epje/i2016-16077-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In this article, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mechanism.
Collapse
Affiliation(s)
- S Jungblut
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Wien, Austria
| | - C Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Wien, Austria.
| |
Collapse
|
8
|
Lervik A, van Erp TS. Gluing Potential Energy Surfaces with Rare Event Simulations. J Chem Theory Comput 2015; 11:2440-50. [DOI: 10.1021/acs.jctc.5b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anders Lervik
- Department
of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Titus S. van Erp
- Department
of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
9
|
Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr Opin Struct Biol 2015; 32:102-12. [PMID: 25863585 DOI: 10.1016/j.sbi.2015.03.008] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) showcase the importance of conformational plasticity and heterogeneity in protein function. We summarize recent advances that connect information encoded in IDP sequences to their conformational properties and functions. We focus on insights obtained through a combination of atomistic simulations and biophysical measurements that are synthesized into a coherent framework using polymer physics theories.
Collapse
|
10
|
Du WN, Bolhuis PG. Adaptive single replica multiple state transition interface sampling. J Chem Phys 2013; 139:044105. [DOI: 10.1063/1.4813777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Gobbo G, Laio A, Maleki A, Baroni S. Absolute transition rates for rare events from dynamical decoupling of reaction variables. PHYSICAL REVIEW LETTERS 2012; 109:150601. [PMID: 23102289 DOI: 10.1103/physrevlett.109.150601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 06/01/2023]
Abstract
We introduce a new approach to evaluate transition rates for rare events in complex many-particle systems. Building on a path-integral representation of transition probabilities for Markov processes, the rate is first expressed in terms of a free energy in the transition-path ensemble. We then define an auxiliary process where a suitably defined reaction variable is dynamically decoupled from all the others, whose dynamics is left unchanged. For this system the transition rates coincide with those of a unidimensional process whose only coordinate is the reaction variable. The free-energy difference between the auxiliary and the physical transition-path ensembles is finally evaluated using standard techniques. The efficiency of this method is deemed to be optimal because the physical and auxiliary dynamics differ by one degree of freedom only at any system size. Our method is demonstrated numerically on a simple model of Lennard-Jones particles ruled by the overdamped Langevin equation.
Collapse
Affiliation(s)
- Gianpaolo Gobbo
- SISSA Scuola Internazionale Superiore Studi Avanzati, Trieste, Italy
| | | | | | | |
Collapse
|
12
|
Du WN, Marino KA, Bolhuis PG. Multiple state transition interface sampling of alanine dipeptide in explicit solvent. J Chem Phys 2011; 135:145102. [DOI: 10.1063/1.3644344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|