1
|
Lingerfelt DB, Yoshimura A, Jakowski J, Ganesh P, Sumpter BG. Extracting Inelastic Scattering Cross Sections for Finite and Aperiodic Materials from Electronic Dynamics Simulations. J Chem Theory Comput 2022; 18:7093-7107. [PMID: 36375179 DOI: 10.1021/acs.jctc.2c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Explicit time-dependent electronic structure theory methods are increasingly prevalent in the areas of condensed matter physics and quantum chemistry, with the broad-band optical absorptivity of molecular and small condensed-phase systems nowadays routinely studied with such approaches. In this paper, it is demonstrated that electronic dynamics simulations can similarly be employed to study cross sections for the scattering-induced electronic excitations probed in nonresonant inelastic X-ray scattering and momentum-resolved electron energy loss spectroscopies. A method is put forth for evaluating the electronic dynamic structure factor, which involves the application of a momentum boost-type perturbation and transformation of the resulting reciprocal space density fluctuations into the frequency domain. Good agreement is first demonstrated between the dynamic structure factor extracted from these electronic dynamics simulations and the corresponding transition matrix elements from linear response theory. The method is then applied to some extended (quasi)one-dimensional systems, for which the wave vector becomes a good quantum number in the thermodynamic limit. Finally, the dispersion of many-body excitations in a series of hydrogen-terminated graphene flakes (and twisted bilayers thereof) is investigated to highlight the utility of the presented approach for capturing morphology-dependent effects in the inelastic scattering cross sections of nanostructured and/or noncrystalline materials.
Collapse
Affiliation(s)
- David B Lingerfelt
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Anthony Yoshimura
- Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Jacek Jakowski
- Computing and Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
3
|
Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 2016; 17:31371-96. [PMID: 25721500 DOI: 10.1039/c5cp00351b] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.
Collapse
Affiliation(s)
- Xavier Andrade
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - David Strubbe
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Umberto De Giovannini
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 Donostia-San Sebastián, Spain
| | - Ask Hjorth Larsen
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 Donostia-San Sebastián, Spain
| | - Micael J T Oliveira
- Unité Nanomat, Département de Physique, Université de Liège, Allée du 6 Août 17, B-4000 Liège, Belgium
| | - Joseba Alberdi-Rodriguez
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 Donostia-San Sebastián, Spain and Dept. of Computer Architecture and Technology, University of the Basque Country UPV/EHU, M. Lardizabal, 1, 20018 Donostia-San Sebastian, Spain
| | - Alejandro Varas
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 Donostia-San Sebastián, Spain
| | - Iris Theophilou
- Peter-Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Nicole Helbig
- Peter-Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Matthieu J Verstraete
- Unité Nanomat, Département de Physique, Université de Liège, Allée du 6 Août 17, B-4000 Liège, Belgium
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
| | - Fernando Nogueira
- Center for Computational Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Alberto Castro
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Center for Advanced Modeling (ZCAM), University of Zaragoza, E-50009 Zaragoza, Spain and ARAID Foundation, María de Luna 11, Edificio CEEI Aragón, Zaragoza E-50018, Spain
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Angel Rubio
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 Donostia-San Sebastián, Spain and Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| |
Collapse
|
4
|
Baczewski AD, Shulenburger L, Desjarlais MP, Hansen SB, Magyar RJ. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition. PHYSICAL REVIEW LETTERS 2016; 116:115004. [PMID: 27035307 DOI: 10.1103/physrevlett.116.115004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 06/05/2023]
Abstract
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
Collapse
Affiliation(s)
- A D Baczewski
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - L Shulenburger
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - M P Desjarlais
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - S B Hansen
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - R J Magyar
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
6
|
Sokaras D, Nordlund D, Weng TC, Mori RA, Velikov P, Wenger D, Garachtchenko A, George M, Borzenets V, Johnson B, Qian Q, Rabedeau T, Bergmann U. A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:043112. [PMID: 22559520 PMCID: PMC4108631 DOI: 10.1063/1.4704458] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/02/2012] [Indexed: 05/29/2023]
Abstract
We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4π sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4π sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.
Collapse
Affiliation(s)
- D Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|