1
|
Hoang VH, Lee NS, Kim HJ. Strain-induced Mn valence state variation in CaMnO 3-δ/substrate interfaces: electronic reconstruction versus oxygen vacancies. NANOSCALE ADVANCES 2023; 5:3887-3895. [PMID: 37496622 PMCID: PMC10368000 DOI: 10.1039/d3na00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
This study investigates the nanoscale crystalline and electronic structures of the interfaces between CaMnO3-δ and substrates such as SrTiO3 (001) and LaAlO3 (001) by employing advanced transmission electron microscopy and electron energy loss spectroscopy techniques. The objective is to comprehend the influence of different strains on the Mn valence state. Our findings reveal that the Mn valence state remains relatively stable in the region of a weakly tensile-strained interface, whereas it experiences a significant decrease from Mn4+ to Mn2.3+ in the region of a strongly tensile-strained interface. Although this reduction in valence appears to be consistent with the electron reconstruction scenario, the observed increase in the out-of-plane lattice constant at the interface implies the accumulation of oxygen vacancies at the interface. Consequently, the present study offers a comprehensive understanding of the intricate relationships among the Mn valence state, local structure, and formation of oxygen vacancies in the context of two distinct strain cases. This knowledge is essential for tailoring the interface properties and guiding future developments in the field of oxide heterostructures.
Collapse
Affiliation(s)
- Van-Hien Hoang
- Department of Physics, Graduate School, Daegu University Gyeongbuk 38453 Republic of Korea
| | - Nam-Suk Lee
- National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Heon-Jung Kim
- Department of Physics, Graduate School, Daegu University Gyeongbuk 38453 Republic of Korea
- Department of Materials-Energy Science and Engineering, College of Engineering, Daegu University Gyeongbuk 38453 Republic of Korea
| |
Collapse
|
2
|
Kobayashi S, Watanabe H, Kato T, Mizuno F, Kuwabara A. Atomic-Scale Observations of Oxygen Release Degradation in Sulfide-Based All-Solid-State Batteries with Layered Oxide Cathodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39459-39466. [PMID: 35981095 DOI: 10.1021/acsami.2c06950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-solid-state batteries exhibit considerable potential for applications in electric vehicles. Understanding and controlling the oxygen release from the layered cathode active material are essential in achieving long-term operation of all-solid-state batteries because the oxygen release degrades the cathode material and the solid electrolyte, triggering capacity degradation. In this study, we verified the specific interface where the oxygen release is accelerated by atomic-scale scanning transmission electron microscopy and electron energy loss spectroscopy analyses. Oxygen release is suppressed at the interface where the LiNbO3 coating layer is sufficiently formed. Decomposition products on the solid electrolyte and the antisite defect layers on the cathode surface are formed by oxygen release at the interface where the Li2S-P2S5 solid electrolyte and Li(Ni1/3Mn1/3Ni1/3)O2 cathode are in direct contact. These irreversible passivation layers lead to capacity degradation. In addition, we found that exfoliation of the LiNbO3 coating from the cathode not only physically breaks the Li conduction path but also results in oxygen release and the deterioration of the cathode. These atomic-scale insights can further advance the development of all-solid-state batteries by suppressing oxygen release.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
| | - Hideaki Watanabe
- Advanced Battery Development Division, Toyota Motor Corporation, Toyota-cho, Toyota 471-8571, Japan
| | - Takeharu Kato
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
| | - Fuminori Mizuno
- Advanced Battery Development Division, Toyota Motor Corporation, Toyota-cho, Toyota 471-8571, Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
| |
Collapse
|
3
|
Liu J, Wang J, Ni Y, Liu J, Zhang Y, Lu Y, Yan Z, Zhang K, Zhao Q, Cheng F, Chen J. Tuning Interphase Chemistry to Stabilize High-Voltage LiCoO 2 Cathode Material via Spinel Coating. Angew Chem Int Ed Engl 2022; 61:e202207000. [PMID: 35657806 DOI: 10.1002/anie.202207000] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Abstract
Cathode electrolyte interphases (CEIs) are critical to the cycling stability of high-voltage cathodes for batteries, yet their formation mechanism and properties remain elusive. Here we report that the compositions of CEIs are largely controlled by abundant species in the inner Helmholtz layer (IHL) and can be tuned from material aspects. The IHL of LiCoO2 (LCO) was found to alter after charging, with a solvent-rich environment that results in fragile organic-rich CEIs. By passivated spinel Li4 Mn5 O12 coating, we achieve an anion-rich IHL after charging, thus enabling robust LiF-rich CEIs. In situ microscopy reveals that LiF-rich CEIs maintain mechanical integrity at 500 °C, in sharp contrast to organic-rich CEIs which undergo severe expansion and subsequent voids/cracks in the cathode. As a result, the spinel-coated LCO exhibits a high specific capacity of 194 mAh g-1 at 0.05 C and a capacity retention of 83 % after 300 cycles at 0.5 C. Our work sheds new light on modulating CEIs for advanced lithium-ion batteries.
Collapse
Affiliation(s)
- Junxiang Liu
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiaqi Wang
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Youxuan Ni
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiuding Liu
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yudong Zhang
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Lu
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qing Zhao
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangyi Cheng
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Liu J, Wang J, Ni Y, Liu J, Zhang Y, Lu Y, Yan Z, Zhang K, Zhao Q, Cheng F, Chen J. Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jiaqi Wang
- Nankai University College of Chemistry CHINA
| | - Youxuan Ni
- Nankai University College of Chemistry CHINA
| | - Jiuding Liu
- Nankai University College of Chemistry CHINA
| | | | - Yong Lu
- Nankai University College of Chemistry CHINA
| | - Zhenhua Yan
- Nankai University College of Chemistry CHINA
| | - Kai Zhang
- Nankai University College of Chemistry CHINA
| | - Qing Zhao
- Nankai University College of Chemistry CHINA
| | | | - Jun Chen
- Nankai University College of Chemistry No.94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
5
|
Mandal AK, Jana A, Chowdhury S, Tiwari A, Choudhary RJ, Phase DM. Mixed Mott-Hubbard and charge transfer nature of 4H-SrMnO 3thin film on Si (100). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:235501. [PMID: 33973533 DOI: 10.1088/1361-648x/abe8a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Room temperature electronic structure of polycrystalline 4H-SrMnO3thin film grown on Si (100) substrate has been studied using resonance photo emission spectroscopy and soft x-ray absorption spectroscopy measurements. Presence of charge transfer screen Mn 3dnLfinal state along with the 3dn-1final state at the valence band edge of 4H-SrMnO3thin film confirms that the ground state is strongly mixed between Mn 3dand O 2pstates. The estimated equivalent values of on-site Coulomb interaction energy (U) and O 2pto Mn 3d- charge transfer energy (Δ) (U≈ Δ ≈ 4.8 eV) from the combination of occupied and unoccupied spectra further confirm the intermediate Mott-Hubbard and charge transfer insulator nature of 4H-SrMnO3film. Despite having similar Mn 4+ valence state in 4H-SrMnO3and cubic SrMnO3, 4H phase is observed to reveal much higher band gap ∼1.5 eV than the cubic phase (0.3 eV), which arises due to different MnO6octahedra environment.
Collapse
Affiliation(s)
- Arup Kumar Mandal
- UGC-DAE Consortium for Scientific Research, Indore-452001, Madhya Pradesh, India
| | - Anupam Jana
- UGC-DAE Consortium for Scientific Research, Indore-452001, Madhya Pradesh, India
| | - Sourav Chowdhury
- UGC-DAE Consortium for Scientific Research, Indore-452001, Madhya Pradesh, India
| | - Achyut Tiwari
- Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India
| | - R J Choudhary
- UGC-DAE Consortium for Scientific Research, Indore-452001, Madhya Pradesh, India
| | - D M Phase
- UGC-DAE Consortium for Scientific Research, Indore-452001, Madhya Pradesh, India
| |
Collapse
|
6
|
Wang H, Srot V, Jiang X, Yi M, Wang Y, Boschker H, Merkle R, Stark RW, Mannhart J, van Aken PA. Probing Charge Accumulation at SrMnO 3/SrTiO 3 Heterointerfaces via Advanced Electron Microscopy and Spectroscopy. ACS NANO 2020; 14:12697-12707. [PMID: 32910642 PMCID: PMC7596774 DOI: 10.1021/acsnano.0c01545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the study of the charge distribution is very challenging due to its small length scale and the intricate structure and chemistry at interfaces. Furthermore, the underlying origin of the interfacial charge distribution has been rarely studied in-depth and is still poorly understood. Here, by a combination of aberration-corrected scanning transmission electron microscopy (STEM) and spectroscopy techniques, we identify the charge accumulation in the SrMnO3 (SMO) side of SrMnO3/SrTiO3 heterointerfaces and find that the charge density attains the maximum of 0.13 ± 0.07 e-/unit cell (uc) at the first SMO monolayer. Based on quantitative atomic-scale STEM analyses and first-principle calculations, we explore the origin of interfacial charge accumulation in terms of epitaxial strain-favored oxygen vacancies, cationic interdiffusion, interfacial charge transfer, and space-charge effects. This study, therefore, provides a comprehensive description of the charge distribution and related mechanisms at the SMO/STO heterointerfaces, which is beneficial for the functionality manipulation via charge engineering at interfaces.
Collapse
Affiliation(s)
- Hongguang Wang
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Vesna Srot
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Xijie Jiang
- Institute
of Materials Science, Technische Universität
Darmstadt, 64287 Darmstadt, Germany
| | - Min Yi
- Institute
of Materials Science, Technische Universität
Darmstadt, 64287 Darmstadt, Germany
- State
Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics
(NUAA), Nanjing 210016, China
| | - Yi Wang
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Hans Boschker
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Rotraut Merkle
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Robert W. Stark
- Institute
of Materials Science, Technische Universität
Darmstadt, 64287 Darmstadt, Germany
| | - Jochen Mannhart
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Peter A. van Aken
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Wang J, Lefler BM, May SJ. Synthesis and Characterization of SrFe xMn 1-x(O,F) 3-δ Oxide (δ = 0 and 0.5) and Oxyfluoride Perovskite Films. Inorg Chem 2020; 59:9990-9997. [PMID: 32628463 DOI: 10.1021/acs.inorgchem.0c01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and characterization of as-grown SrFexMn1-xO2.5 epitaxial films, which were also subjected to postgrowth oxidation and topotactic fluorination to obtain SrFexMn1-xO3 and SrFexMn1-xO2.5-δFγ films. We show how both the B-site cation and anion composition influence the structural, electronic, and optical properties of this family of perovskite materials. The Fe substitution of Mn in SrMnO2.5 gradually expands the c-axis parameter, as indicated by X-ray diffraction. With increasing x, the F content incorporated under identical fluorination conditions increases, reaching its maximum in SrFeO2.5-δFγ. In the compounds with mixed B-site occupation, the Fe 2p photoemission peaks are shifted upon fluorination, while the Mn 2p peaks are not, suggesting inductive effects lead to asymmetric responses in how F alters the Mn and Fe bonds. Electronic transport measurements reveal all compounds are insulators, with the exception of SrFeO3, and demonstrate that fluorination increases resistivity for all values of x. Optical absorption spectra in the SrFexMn1-xO2.5 and SrFexMn1-xO3 films evolve systematically as a function of x, consistent with a physical scenario in which optical changes with Fe substitution arise from a linear combination of Mn and Fe 3d bands within the electronic structure. In contrast, the F incorporation induces nonlinear changes to the optical response, suggesting a more complex impact on the electronic structure in materials with concurrent B-site and anion site substitution.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin M Lefler
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Steven J May
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Hona RK, Ramezanipour F. Effect of the Oxygen Vacancies and Structural Order on the Oxygen Evolution Activity: A Case Study of SrMnO 3-δ Featuring Four Different Structure Types. Inorg Chem 2020; 59:4685-4692. [PMID: 32212686 DOI: 10.1021/acs.inorgchem.9b03774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the facile synthesis methods of four materials, with the general formula SrMnO3-δ, which have previously been synthesized in multiple steps, involving switching between different oxidizing and reducing gases, quenching, the use of zirconium metal as a reductant, etc. However, we have shown that it is possible to synthesize all of these materials by facile processes without unnecessary complications. In fact, we have found methods of synthesizing the oxygen-deficient phases in only one step. Given the diverse range of structures that are formed for SrMnO3-δ, we have investigated the correlations between the structural order and electrocatalytic activity for the oxygen evolution reaction (OER) of water splitting. We have uncovered a systematic trend in the OER activity, where the most oxygen-deficient compound, SrMnO2.5, which features square-pyramidal coordination geometry around manganese, shows the highest OER performance. The next OER activity belongs to SrMnO2.6, which contains both MnO5 trigonal bipyramids and MnO6 octahedra. SrMnO3(cubic), containing only corner-sharing MnO6 units, shows the third best OER performance. The least activity is observed in SrMnO3(hexagonal), featuring both face- and corner-sharing MnO6 octahedra. We have also studied the electrochemically active surface area, as well as the kinetics of OER for all four materials, and found that the trend in these properties is the same as the trend in the OER activity. These findings indicate that the electrocatalytic activity is correlated with the degree of oxygen deficiency, as well as the polyhedral connectivity.
Collapse
Affiliation(s)
- Ram Krishna Hona
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Farshid Ramezanipour
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
9
|
Structure, optical and magnetic properties of new Bi 0.5Na 0.5TiO 3- SrMnO 3-δ solid solution materials. Sci Rep 2019; 9:18186. [PMID: 31796779 PMCID: PMC6890638 DOI: 10.1038/s41598-019-54172-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/07/2019] [Indexed: 11/27/2022] Open
Abstract
The new Bi0.5Na0.5TiO3-SrMnO3−δ solid solution materials were fabricated via sol–gel method. The random incorporation of Sr and Mn cations into host lattice of Bi0.5Na0.5TiO3 resulted in structural distortion and influenced on the reduction of the optical band gap from 3.07 eV to 1.81 eV for pure Bi0.5Na0.5TiO3 and 9 mol% SrMnO3−δ solid solution into Bi0.5Na0.5TiO3. The magnetic properties of Bi0.5Na0.5TiO3 materials at room temperature were tuned via compensation of diamagnetic material with weak-ferromagnetism to ferromagnetism with low SrMnO3−δ content and combination of paramagnetism/antiferromagnetism-like and ferromagnetism with higher SrMnO3−δ content solid solution in Bi0.5Na0.5TiO3. The tunable magnetic and optical properties of lead-free ferroelectric materials was promising for their application to green electronic devices.
Collapse
|
10
|
Wang J, Shin Y, Gauquelin N, Yang Y, Lee C, Jannis D, Verbeeck J, Rondinelli JM, May SJ. Physical properties of epitaxial SrMnO 2.5-δ F γ oxyfluoride films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:365602. [PMID: 31121575 DOI: 10.1088/1361-648x/ab2414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO2.5-δ F γ films were synthesized via topotactic fluorination of SrMnO2.5 films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO3 films were also prepared for comparison with the fluorinated samples. The F content, probed by x-ray photoemission spectroscopy, was systematically controlled by adjusting fluorination conditions. Electronic transport measurements reveal that increased F content (up to γ = 0.14) systematically increases the electrical resistivity, despite the nominal electron-doping induced by F substitution for O in these films. In contrast, oxidized SrMnO3 exhibits a decreased resistivity and conduction activation energy. A blue-shift of optical absorption features occurs with increasing F content. Density functional theory calculations indicate that F acts as a scattering center for electronic transport, controls the observed weak ferromagnetic behavior of the films, and reduces the inter-band optical transitions in the manganite films. These results stand in contrast to bulk electron-doped La1-x Ce x MnO3, illustrating how aliovalent anionic substitutions can yield physical behavior distinct from A-site substituted perovskites with the same nominal B-site oxidation states.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang BC, Yu P, Chu YH, Chang CS, Ramesh R, Dunin-Borkowski RE, Ebert P, Chiu YP. Atomically Resolved Electronic States and Correlated Magnetic Order at Termination Engineered Complex Oxide Heterointerfaces. ACS NANO 2018; 12:1089-1095. [PMID: 29384356 DOI: 10.1021/acsnano.7b06004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We map electronic states, band gaps, and interface-bound charges at termination-engineered BiFeO3/La0.7Sr0.3MnO3 interfaces using atomically resolved cross-sectional scanning tunneling microscopy. We identify a delicate interplay of different correlated physical effects and relate these to the ferroelectric and magnetic interface properties tuned by engineering the atomic layer stacking sequence at the interfaces. This study highlights the importance of a direct atomically resolved access to electronic interface states for understanding the intriguing interface properties in complex oxides.
Collapse
Affiliation(s)
- Bo-Chao Huang
- Department of Physics, National Taiwan University , Taipei 106, Taiwan
- Institute of Physics, Academia Sinica , Taipei 105, Taiwan
| | - Pu Yu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, and Collaborative Innovation Center of Quantum Matter , Beijing 100084, China
- RIKEN Center for Emergent Matter Science (CEMS) , Wako, Saitama 351-0198, Japan
| | - Y H Chu
- Institute of Physics, Academia Sinica , Taipei 105, Taiwan
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 300, Taiwan
| | | | - Ramamoorthy Ramesh
- Department of Physics, University of California , Berkeley, California 94720, United States
| | | | - Philipp Ebert
- Peter Grünberg Institut, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Ya-Ping Chiu
- Department of Physics, National Taiwan University , Taipei 106, Taiwan
- Institute of Physics, Academia Sinica , Taipei 105, Taiwan
| |
Collapse
|
12
|
Yi D, Flint CL, Balakrishnan PP, Mahalingam K, Urwin B, Vailionis A, N'Diaye AT, Shafer P, Arenholz E, Choi Y, Stone KH, Chu JH, Howe BM, Liu J, Fisher IR, Suzuki Y. Tuning Perpendicular Magnetic Anisotropy by Oxygen Octahedral Rotations in (La_{1-x}Sr_{x}MnO_{3})/(SrIrO_{3}) Superlattices. PHYSICAL REVIEW LETTERS 2017; 119:077201. [PMID: 28949659 DOI: 10.1103/physrevlett.119.077201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Perpendicular magnetic anisotropy (PMA) plays a critical role in the development of spintronics, thereby demanding new strategies to control PMA. Here we demonstrate a conceptually new type of interface induced PMA that is controlled by oxygen octahedral rotation. In superlattices comprised of La_{1-x}Sr_{x}MnO_{3} and SrIrO_{3}, we find that all superlattices (0≤x≤1) exhibit ferromagnetism despite the fact that La_{1-x}Sr_{x}MnO_{3} is antiferromagnetic for x>0.5. PMA as high as 4×10^{6} erg/cm^{3} is observed by increasing x and attributed to a decrease of oxygen octahedral rotation at interfaces. We also demonstrate that oxygen octahedral deformation cannot explain the trend in PMA. These results reveal a new degree of freedom to control PMA, enabling discovery of emergent magnetic textures and topological phenomena.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Charles L Flint
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of MSE, Stanford University, Stanford, California 94305, USA
| | - Purnima P Balakrishnan
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Krishnamurthy Mahalingam
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
| | - Brittany Urwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
| | - Arturas Vailionis
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kevin H Stone
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jiun-Haw Chu
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Brandon M Howe
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ian R Fisher
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yuri Suzuki
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Porras-Vazquez JM, Losilla ER, Keenan PJ, Hancock CA, Kemp TF, Hanna JV, Slater PR. Investigation into the effect of Si doping on the performance of Sr(1-y)Ca(y)MnO(3-δ) SOFC cathode materials. Dalton Trans 2013; 42:5421-9. [PMID: 23420186 DOI: 10.1039/c3dt32561j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report the successful incorporation of silicon into Sr1-yCayMnO3-δ perovskite materials for potential applications in cathodes for solid oxide fuel cells. The Si substitution onto the B site of a (29)Si enriched Sr1-yCayMn1-xSixO3-δ perovskite system is confirmed by (29)Si MAS NMR measurements at low B0 field. The very large paramagnetic shift (~3000-3500 ppm) and anisotropy (span ~4000 ppm) suggests that the Si(4+) species experiences both Fermi contact and electron-nuclear dipolar contributions to the paramagnetic interaction with the Mn(3+/4+) centres. An improvement in the conductivity is observed for low level Si doping, which can be attributed to two factors. The first of these is attributed to the tetrahedral coordination preference of Si leading to the introduction of oxide ion vacancies, and hence a partial reduction of Mn(4+) to give mixed valence Mn. Secondly, for samples with high Sr levels, the undoped systems adopt a hexagonal perovskite structure containing face sharing of MnO6 octahedra, while Si doping is shown to help to stabilise the more highly conducting cubic perovskite containing corner linked octahedra. The level of Si, x, required to stabilise the cubic Sr1-yCayMn1-xSixO3-δ perovskite in these cases is shown to decrease with increasing Ca content; thus cubic symmetry is achieved at x = 0.05 for the Sr0.5Ca0.5Mn1-xSixO3-δ series; x = 0.075 for Sr0.7Ca0.3Mn1-xSixO3-δ; x = 0.10 for Sr0.8Ca0.2Mn1-xSixO3-δ; and x = 0.15 for SrMn1-xSixO3-δ. Composites with 50% Ce0.9Gd0.1O1.95 were examined on dense Ce0.9Gd0.1O1.95 pellets. For all series an improvement in the area specific resistances (ASR) values is observed for the Si-doped samples. Thus these preliminary results show that silicon can be incorporated into perovskite cathode materials and can have a beneficial effect on the performance.
Collapse
|