1
|
Gao R, Ye X, Hu C, Zhang Z, Ji X, Zhang Y, Meng X, Yang H, Zhu X, Li RW. Nanoionics enabled atomic point contact construction and quantum conductance effects. MATERIALS HORIZONS 2025; 12:37-63. [PMID: 39359178 DOI: 10.1039/d4mh00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The miniaturization of electronic devices is important for the development of high-density and function-integrated information devices. Atomic-point-contact (APC) structures refer to narrow contact areas formed by one or more atoms between two conductive electrodes that produce quantum conductance effects when the electrons pass through the APC channel, providing a new development path for the miniaturization of information devices. Recently, nanoionics has enabled the electric field reconfiguration of APC structures in solid-state electrolytes, offering new approaches to controlling the quantum conductance states, which may lead to the development of emerging information technologies with low power consumption, high speed, and high density. This review provides an overview of APC structures with a focus on the fabrication methods enabled by nanoionics technology. In particular, the advantages of electric field-driven nanoionics in the construction of APC structures are summarized, and the influence of external fields on quantum conductance effects is discussed. Recent studies on electric field regulation of APC structures to achieve precise control of quantum conductance states are also reviewed. The potential applications of quantum conductance effects in memory, computing, and encryption-related information technologies are further explored. Finally, the challenges and future prospects of quantum conductance effects in APC structures are discussed.
Collapse
Affiliation(s)
- Runsheng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziyi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Ji
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Meng
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
García-Blázquez MA, Dednam W, Palacios JJ. Nonequilibrium Magneto-Conductance as a Manifestation of Spin Filtering in Chiral Nanojunctions. J Phys Chem Lett 2023; 14:7931-7939. [PMID: 37646507 PMCID: PMC10494227 DOI: 10.1021/acs.jpclett.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
It is generally accepted that spin-dependent electron transmission may appear in chiral systems, even without magnetic components, as long as significant spin-orbit coupling is present in some of its elements. However, how this chirality-induced spin selectivity (CISS) manifests in experiments, where the system is taken out of equilibrium, is still debated. Aided by group theoretical considerations and nonequilibrium DFT-based quantum transport calculations, here we show that when spatial symmetries that forbid a finite spin polarization in equilibrium are broken, a net spin accumulation appears at finite bias in an arbitrary two-terminal nanojunction. Furthermore, when a suitably magnetized detector is introduced into the system, the net spin accumulation, in turn, translates into a finite magneto-conductance. The symmetry prerequisites are mostly analogous to those for the spin polarization at any bias with the vectorial nature given by the direction of magnetization, hence establishing an interconnection between these quantities.
Collapse
Affiliation(s)
- M. A. García-Blázquez
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - W. Dednam
- Department
of Physics, Science Campus, University of
South Africa, Florida
Park, Johannesburg 1710, South Africa
| | - J. J. Palacios
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
3
|
Valli A, Tomczak JM. Resistance saturation in semi-conducting polyacetylene molecular wires. JOURNAL OF COMPUTATIONAL ELECTRONICS 2023; 22:1363-1376. [PMID: 37840651 PMCID: PMC10567864 DOI: 10.1007/s10825-023-02043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 10/17/2023]
Abstract
Realizing the promises of molecular electronic devices requires an understanding of transport on the nanoscale. Here, we consider a Su-Schrieffer-Heeger model for semi-conducting trans-polyacetylene molecular wires in which we endow charge carriers with a finite lifetime. The aim of this exercise is two-fold: (i) the simplicity of the model allows an insightful numerical and analytical comparison of the Landauer and Kubo linear-response formalism; (ii) we distill the prototypical characteristics of charge transport through gapped mesoscopic systems and compare these to bulk semiconductors. We find that both techniques yield a residual differential conductance at low temperatures for contacted polyacetylene chains of arbitrary length-in line with the resistivity saturation in some correlated narrow-gap semiconductors. Quantitative agreement, however, is limited to not too long molecules. Indeed, while the Landauer transmission is suppressed exponentially with the system size, the Kubo response only decays hyperbolically. Our findings inform the choice of transport methodologies for the ab initio modelling of molecular devices.
Collapse
Affiliation(s)
- Angelo Valli
- Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111 Hungary
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Jan M. Tomczak
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
- Institute for Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| |
Collapse
|
4
|
Zotti LA, Dednam W, Lombardi EB, Palacios JJ. Constrained DFT for Molecular Junctions. NANOMATERIALS 2022; 12:nano12071234. [PMID: 35407352 PMCID: PMC9002544 DOI: 10.3390/nano12071234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
We have explored the use of constrained density functional theory (cDFT) for molecular junctions based on benzenediamine. By elongating the junction, we observe that the energy gap between the ionization potential and the electronic affinity increases with the stretching distance. This is consistent with the trend expected from the electrostatic screening. A more detailed analysis shows how this influences the charge distribution of both the individual metal layers and the molecular atoms. Overall, our work shows that constrained DFT is a powerful tool for studying screening effects in molecular junctions.
Collapse
Affiliation(s)
- Linda Angela Zotti
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain;
- Correspondence:
| | - Wynand Dednam
- Department of Physics, Science Campus, University of South Africa, Private Bag X6, Florida Park 1710, South Africa; (W.D.); (E.B.L.)
| | - Enrico B. Lombardi
- Department of Physics, Science Campus, University of South Africa, Private Bag X6, Florida Park 1710, South Africa; (W.D.); (E.B.L.)
| | - Juan Jose Palacios
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain;
- Departamento de Física de la Materia Condensada and Instituto Nicolás Cabrera (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
5
|
Gandus G, Valli A, Passerone D, Stadler R. Smart local orbitals for efficient calculations within density functional theory and beyond. J Chem Phys 2020; 153:194103. [PMID: 33218230 DOI: 10.1063/5.0021821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Localized basis sets in the projector augmented wave formalism allow for computationally efficient calculations within density functional theory (DFT). However, achieving high numerical accuracy requires an extensive basis set, which also poses a fundamental problem for the interpretation of the results. We present a way to obtain a reduced basis set of atomic orbitals through the subdiagonalization of each atomic block of the Hamiltonian. The resulting local orbitals (LOs) inherit the information of the local crystal field. In the LO basis, it becomes apparent that the Hamiltonian is nearly block-diagonal, and we demonstrate that it is possible to keep only a subset of relevant LOs that provide an accurate description of the physics around the Fermi level. This reduces to some extent the redundancy of the original basis set, and at the same time, it allows one to perform post-processing of DFT calculations, ranging from the interpretation of electron transport to extracting effective tight-binding Hamiltonians, very efficiently and without sacrificing the accuracy of the results.
Collapse
Affiliation(s)
- G Gandus
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - A Valli
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - D Passerone
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - R Stadler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| |
Collapse
|
6
|
Jacob D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:354003. [PMID: 30035748 DOI: 10.1088/1361-648x/aad523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-ion magnetic anisotropy in molecular magnets leads to spin flip excitations that can be measured by inelastic scanning tunneling microscope (STM) spectroscopy. Here I present a semi ab initio scheme to compute the spectral features associated with inelastic spin flip excitations and Kondo effect of single molecular magnets. To this end density functional theory calculations of the molecule on the substrate are combined with more sophisticated many-body techniques for solving the Anderson impurity problem of the spin-carrying orbitals of the magnetic molecule coupled to the rest of the system, containing a phenomenological magnetic anisotropy term. For calculating the STM spectra an exact expression for the [Formula: see text] in the ideal STM limit, when the coupling to the STM tip becomes negligibly small, is derived. In this limit the [Formula: see text] is simply related to the spectral function of the molecule-substrate system. For the case of an Fe porphyrin molecule on the Au(1 1 1) substrate, the calculated STM spectra are in good agreement with recently measured STM spectra, showing the typical step features at finite bias associated with spin flip excitation of a spin-1 quantum magnet. For the case of Kondo effect in Mn porphyrin on Au(1 1 1), the agreement with the experimental spectra is not as good due to the neglect of quantum interference in the tunneling.
Collapse
Affiliation(s)
- David Jacob
- Nano-Bio Spectroscopy Group, Dpto. de Física de Materiales, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
7
|
Ares P, Amo-Ochoa P, Soler JM, Palacios JJ, Gómez-Herrero J, Zamora F. High Electrical Conductivity of Single Metal-Organic Chains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705645. [PMID: 29659059 DOI: 10.1002/adma.201705645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Molecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal-organic polymers are quasi-1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands. They are excellent electrical conductors as bulk macroscopic crystals and as nanoribbons. However, according to theoretical calculations, the electrical conductance found in the experiments should be even higher. Here, a novel and simple drop-casting procedure to isolate bundles of few to single MMX chains is demonstrated. Furthermore, an exponential dependence of the electrical resistance of one or two MMX chains as a function of their length that does not agree with predictions based on their theoretical band structure is reported. This dependence is attributed to strong Anderson localization originated by structural defects. Theoretical modeling confirms that the current is limited by structural defects, mainly vacancies of iodine atoms, through which the current is constrained to flow. Nevertheless, measurable electrical transport along distances beyond 250 nm surpasses that of all other molecular wires reported so far. This work places in perspective the role of defects in 1D wires and their importance for molecular electronics.
Collapse
Affiliation(s)
- Pablo Ares
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, E-28049, Spain
| | - Pilar Amo-Ochoa
- Departamento de Química Inorgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, E-28049, Spain
| | - José M Soler
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, E-28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, E-28049, Spain
| | - Juan José Palacios
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, E-28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, E-28049, Spain
| | - Julio Gómez-Herrero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, E-28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, E-28049, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, E-28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, E-28049, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, Madrid, E-28049, Spain
| |
Collapse
|
8
|
Pakdel S, Pourfath M, Palacios JJ. An implementation of spin-orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bi. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1015-1023. [PMID: 29719753 PMCID: PMC5905249 DOI: 10.3762/bjnano.9.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
We present an implementation of spin-orbit coupling (SOC) for density functional theory band structure calculations that makes use of Gaussian basis sets. It is based on the explicit evaluation of SOC matrix elements, both the radial and angular parts. For all-electron basis sets, where the full nodal structure is present in the basis elements, the results are in good agreement with well-established implementations such as VASP. For more practical pseudopotential basis sets, which lack nodal structure, an ad-hoc increase of the effective nuclear potential helps to capture all relevant band structure variations induced by SOC. In this work, the non-relativistic or scalar-relativistic Kohn-Sham Hamiltonian is obtained from the CRYSTAL code and the SOC term is added a posteriori. As an example, we apply this method to the Bi(111) monolayer, a paradigmatic 2D topological insulator, and to mono- and multilayer Sb(111) (also known as antimonene), the former being a trivial semiconductor and the latter a topological semimetal featuring topologically protected surface states.
Collapse
Affiliation(s)
- Sahar Pakdel
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 14395-515, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27–29/E360, 1040 Vienna, Austria
| | - J J Palacios
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Nicolás Cabrera (INC), and Condensed Matter Physics Institute (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Karolak M, Jacob D. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:445301. [PMID: 27605217 DOI: 10.1088/0953-8984/28/44/445301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect.
Collapse
Affiliation(s)
- M Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
10
|
Gonzalez-Herrero H, Gomez-Rodriguez JM, Mallet P, Moaied M, Palacios JJ, Salgado C, Ugeda MM, Veuillen JY, Yndurain F, Brihuega I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016; 352:437-41. [DOI: 10.1126/science.aad8038] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/21/2016] [Indexed: 01/29/2023]
|
11
|
Karan S, Jacob D, Karolak M, Hamann C, Wang Y, Weismann A, Lichtenstein AI, Berndt R. Shifting the Voltage Drop in Electron Transport Through a Single Molecule. PHYSICAL REVIEW LETTERS 2015; 115:016802. [PMID: 26182113 DOI: 10.1103/physrevlett.115.016802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
A Mn-porphyrin was contacted on Au(111) in a low-temperature scanning tunneling microscope (STM). Differential conductance spectra show a zero-bias resonance that is due to an underscreened Kondo effect according to many-body calculations. When the Mn center is contacted by the STM tip, the spectrum appears to invert along the voltage axis. A drastic change in the electrostatic potential of the molecule involving a small geometric relaxation is found to cause this observation.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - David Jacob
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| | - Michael Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Hamann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Yongfeng Wang
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
12
|
Jacob D. Towards a full ab initio theory of strong electronic correlations in nanoscale devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:245606. [PMID: 26037313 DOI: 10.1088/0953-8984/27/24/245606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper I give a detailed account of an ab initio methodology for describing strong electronic correlations in nanoscale devices hosting transition metal atoms with open d- or f-shells. The method combines Kohn-Sham density functional theory for treating the weakly interacting electrons on a static mean-field level with non-perturbative many-body methods for the strongly interacting electrons in the open d- and f-shells. An effective description of the strongly interacting electrons in terms of a multi-orbital Anderson impurity model is obtained by projection onto the strongly correlated subspace properly taking into account the non-orthogonality of the atomic basis set. A special focus lies on the ab initio calculation of the effective screened interaction matrix U for the Anderson model. Solution of the effective Anderson model with the one-crossing approximation or other impurity solver techniques yields the dynamic correlations within the strongly correlated subspace giving rise e.g. to the Kondo effect. As an example the method is applied to the case of a Co adatom on the Cu(0 0 1) surface. The calculated low-bias tunnel spectra show Fano-Kondo lineshapes similar to those measured in experiments. The exact shape of the Fano-Kondo feature as well as its width depend quite strongly on the filling of the Co 3d-shell. Although this somewhat hampers accurate quantitative predictions regarding lineshapes and Kondo temperatures, the overall physical situation can be predicted quite reliably.
Collapse
Affiliation(s)
- David Jacob
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
13
|
Reuter MG, Harrison RJ. Rethinking first-principles electron transport theories with projection operators: the problems caused by partitioning the basis set. J Chem Phys 2014; 139:114104. [PMID: 24070276 DOI: 10.1063/1.4821176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We revisit the derivation of electron transport theories with a focus on the projection operators chosen to partition the system. The prevailing choice of assigning each computational basis function to a region causes two problems. First, this choice generally results in oblique projection operators, which are non-Hermitian and violate implicit assumptions in the derivation. Second, these operators are defined with the physically insignificant basis set and, as such, preclude a well-defined basis set limit. We thus advocate for the selection of physically motivated, orthogonal projection operators (which are Hermitian) and present an operator-based derivation of electron transport theories. Unlike the conventional, matrix-based approaches, this derivation requires no knowledge of the computational basis set. In this process, we also find that common transport formalisms for nonorthogonal basis sets improperly decouple the exterior regions, leading to a short circuit through the system. We finally discuss the implications of these results for first-principles calculations of electron transport.
Collapse
Affiliation(s)
- Matthew G Reuter
- Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | |
Collapse
|
14
|
Bagrets A. Spin-Polarized Electron Transport Across Metal–Organic Molecules: A Density Functional Theory Approach. J Chem Theory Comput 2013; 9:2801-15. [DOI: 10.1021/ct4000263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alexei Bagrets
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76344 Eggenstein-Leopoldshafen, Germany, and Steinbuch
Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen,
Germany
| |
Collapse
|
15
|
Sabater C, Gosálbez-Martínez D, Fernández-Rossier J, Rodrigo JG, Untiedt C, Palacios JJ. Topologically protected quantum transport in locally exfoliated bismuth at room temperature. PHYSICAL REVIEW LETTERS 2013; 110:176802. [PMID: 23679755 DOI: 10.1103/physrevlett.110.176802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Indexed: 06/02/2023]
Abstract
We report electrical conductance measurements of Bi nanocontacts created by repeated tip-surface indentation using a scanning tunneling microscope at temperatures of 4 and 300 K. As a function of the elongation of the nanocontact, we measure robust, tens of nanometers long plateaus of conductance G0 = 2e2/h at room temperature. This observation can be accounted for by the mechanical exfoliation of a Bi(111) bilayer, a predicted quantum spin Hall (QSH) insulator, in the retracing process following a tip-surface contact. The formation of the bilayer is further supported by the additional observation of conductance steps below G0 before breakup at both temperatures. Our finding provides the first experimental evidence of the possibility of mechanical exfoliation of Bi bilayers, the existence of the QSH phase in a two-dimensional crystal, and, most importantly, the observation of the QSH phase at room temperature.
Collapse
Affiliation(s)
- C Sabater
- Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, Alicante 03690, Spain
| | | | | | | | | | | |
Collapse
|