1
|
Feldmann R, Reiher M. Renormalized Internally Contracted Multireference Coupled Cluster with Perturbative Triples. J Chem Theory Comput 2024; 20. [PMID: 39158160 PMCID: PMC11360144 DOI: 10.1021/acs.jctc.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
In this work, we combine the many-body formulation of the internally contracted multireference coupled cluster (ic-MRCC) method with Evangelista's multireference formulation of the driven similarity renormalization group (DSRG). The DSRG method can be viewed as a unitary multireference coupled cluster theory, which renormalizes the amplitudes based on a flow equation approach to eliminate numerical instabilities. We extend this approach by demonstrating that the unitary flow equation approach can be adapted for nonunitary transformations, rationalizing the renormalization of ic-MRCC amplitudes. We denote the new approach, the renormalized ic-MRCC (ric-MRCC) method. To achieve high accuracy with a reasonable computational cost, we introduce a new approximation to the Baker-Campbell-Hausdorff expansion. We fully consider the linear commutator while approximating the quadratic commutator, for which we neglect specific contractions involving amplitudes with active indices. Moreover, we introduce approximate perturbative triples to obtain the ric-MRCCSD[T] method. We demonstrate the accuracy of our approaches in comparison to advanced multireference methods for the potential energy curves of H8, F2, H2O, N2, and Cr2. Additionally, we show that ric-MRCCSD and ric-MRCSSD[T] match the accuracy of CCSD(T) for evaluating spectroscopic constants and of full configuration interaction energies for a set of small molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Herrmann N, Hanrath M. A correctly scaling rigorously spin-adapted and spin-complete open-shell CCSD implementation for arbitrary high-spin states. J Chem Phys 2022; 156:054111. [DOI: 10.1063/5.0078020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nils Herrmann
- Institute for Theoretical Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Michael Hanrath
- Institute for Theoretical Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| |
Collapse
|
3
|
Herrmann N, Hanrath M. Analysis of different sets of spin-adapted substitution operators in open-shell coupled cluster theory. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2005836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nils Herrmann
- Institute for Theoretical Chemistry, University of Cologne, Cologne, Germany
| | - Michael Hanrath
- Institute for Theoretical Chemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Li C, Evangelista FA. Spin-free formulation of the multireference driven similarity renormalization group: A benchmark study of first-row diatomic molecules and spin-crossover energetics. J Chem Phys 2021; 155:114111. [PMID: 34551530 DOI: 10.1063/5.0059362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a spin-free formulation of the multireference (MR) driven similarity renormalization group (DSRG) based on the ensemble normal ordering of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. This ensemble averages over all microstates of a given total spin quantum number, and therefore, it is invariant with respect to SU(2) transformations. As such, all equations may be reformulated in terms of spin-free quantities and they closely resemble those of spin-adapted closed-shell coupled cluster (CC) theory. The current implementation is used to assess the accuracy of various truncated MR-DSRG methods (perturbation theory up to third order and iterative methods with single and double excitations) in computing the constants of 33 first-row diatomic molecules. The accuracy trends for these first-row diatomics are consistent with our previous benchmark on a small subset of closed-shell diatomic molecules. We then present the first MR-DSRG application on transition-metal complexes by computing the spin splittings of the [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules. A focal point analysis (FPA) shows that third-order perturbative corrections are essential to achieve reasonably converged energetics. The FPA based on the linearized MR-DSRG theory with one- and two-body operators and up to a quintuple-ζ basis set predicts the spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ to be -35.7 and -17.1 kcal mol-1, respectively, showing good agreement with the results of local CC theory with singles, doubles, and perturbative triples.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
5
|
Chakravarti D, Hazra K, Kayal R, Sasmal S, Mukherjee D. Exploration of interlacing and avoided crossings in a manifold of potential energy curves by a unitary group adapted state specific multi-reference perturbation theory (UGA-SSMRPT). J Chem Phys 2021; 155:014101. [PMID: 34241385 DOI: 10.1063/5.0054731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Unitary Group Adapted State-Specific Multi-Reference Perturbation Theory (UGA-SSMRPT2) developed by Mukherjee et al. [J. Comput. Chem. 36, 670 (2015)] has successfully realized the goal of studying bond dissociation in a numerically stable, spin-preserving, and size-consistent manner. We explore and analyze here the efficacy of the UGA-SSMRPT2 theory in the description of the avoided crossings and interlacings between a manifold of potential energy curves for states belonging to the same space-spin symmetry. Three different aspects of UGA-SSMRPT2 have been studied: (a) We introduce and develop the most rigorous version of UGA-SSMRPT2 that emerges from the rigorous version of UGA-SSMRCC utilizing a linearly independent virtual manifold; we call this the "projection" version of UGA-SSMRPT2 (UGA-SSMRPT2 scheme P). We compare and contrast this approach with our earlier formulation that used extra sufficiency conditions via amplitude equations (UGA-SSMRPT2 scheme A). (b) We present the results for a variety of electronic states of a set of molecules, which display the striking accuracy of both the two versions of UGA-SSMRPT2 with respect to three different situations involving weakly avoided crossings, moderate/strongly avoided crossings, and interlacing in a manifold of potential energy curves (PECs) of the same symmetry. Accuracy of our results has been benchmarked against IC-MRCISD + Q.
Collapse
Affiliation(s)
- Dibyajyoti Chakravarti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Koustav Hazra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Riya Kayal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Sudip Sasmal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany
| | - Debashis Mukherjee
- Centre for Quantum Engineering, Research, and Education (CQuERE), TCG-CREST, Kolkata, India
| |
Collapse
|
6
|
Datta D, Gauss J. Accurate Prediction of Hyperfine Coupling Tensors for Main Group Elements Using a Unitary Group Based Rigorously Spin-Adapted Coupled-Cluster Theory. J Chem Theory Comput 2019; 15:1572-1592. [PMID: 30698956 DOI: 10.1021/acs.jctc.8b01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the development of a perturbative triples correction scheme for the previously reported unitary group based spin-adapted combinatoric open-shell coupled-cluster (CC) singles and doubles (COS-CCSD) approach and report on the applications of the newly developed method, termed "COS-CCSD(T)", to the calculation of hyperfine coupling (HFC) tensors for radicals consisting of hydrogen, second- and third-row elements. The COS-CCSD(T) method involves a single noniterative step with [Formula: see text] scaling of the computational cost for the calculation of triples corrections to the energy. The key feature of this development is the use of spatial semicanonical orbitals generated from standard restricted open-shell Hartree-Fock (ROHF) orbitals, which allows the unperturbed Hamiltonian operator to be defined in terms of a diagonal spin-free Fock operator. The HFC tensors are computed as a first-order property via implementation of an analytic derivative scheme. The required one-particle spin density matrix is computed by using one- and two-particle spin-free density matrices that are obtained from the analytic derivative implementation, in this way avoiding the use of any spin-dependent operator and maintaining spin adaptation of the CC wavefunction. Benchmark calculations of HFC tensors for a set of 21 radicals indicate reasonably good agreement of the COS-CCSD(T) results with experiment and a consistent improvement over the COS-CCSD method. We demonstrate that the accuracies of the isotropic hyperfine coupling constants obtained in unrestricted HF (UHF) reference based spin-orbital CCSD(T) calculations deteriorate when spin contamination in the UHF wavefunction is large, and the results may even become qualitatively incorrect when spin polarization is the driving mechanism. Within a similar noniterative perturbative treatment of triple excitations, the spin-adapted COS-CCSD(T) approach produces accurate results, thus ensuring cost-effectiveness together with reliability.
Collapse
Affiliation(s)
- Dipayan Datta
- Institut für Physikalische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
7
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
8
|
Sen S, Shee A, Mukherjee D. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements. J Chem Phys 2018; 148:054107. [DOI: 10.1063/1.5018086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sangita Sen
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Debashis Mukherjee
- Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
9
|
Datta D, Gauss J. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme. J Chem Phys 2015; 143:011101. [DOI: 10.1063/1.4923436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dipayan Datta
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
10
|
Datta D, Gauss J. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties. J Chem Phys 2014; 141:104102. [DOI: 10.1063/1.4894773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dipayan Datta
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
11
|
Aspects of size extensivity in unitary group adapted multi-reference coupled cluster theories: the role of cumulant decomposition of spin-free reduced density matrices. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1522-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Sen S, Shee A, Mukherjee D. A study of the ionisation and excitation energies of core electrons using a unitary group adapted state universal approach. Mol Phys 2013. [DOI: 10.1080/00268976.2013.802384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Datta D, Gauss J. A Non-antisymmetric Tensor Contraction Engine for the Automated Implementation of Spin-Adapted Coupled Cluster Approaches. J Chem Theory Comput 2013; 9:2639-53. [DOI: 10.1021/ct400216h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dipayan Datta
- Institut für Physikalische Chemie, Johannes
Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz,
Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Johannes
Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz,
Germany
| |
Collapse
|
14
|
Shee A, Sen S, Mukherjee D. Exploration of Various Aspects of UGA-SUMRCC: Size Extensivity, Possible Use of Sufficiency Conditions, and an Extension for Direct Determination of Energy Differences. J Chem Theory Comput 2013; 9:2573-90. [DOI: 10.1021/ct3011024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Avijit Shee
- Raman Center for Atomic, Molecular
and Optical Sciences, Indian Association for the Cultivation of Science,
Kolkata 700 032, India
- Laboratoire de Chimie et Physique
Quantique (UMR 5626), CNRS/Université de Toulouse 3 (Paul Sabatier),
118 route de Narbonne, 31062 Toulouse, France
| | - Sangita Sen
- Raman Center for Atomic, Molecular
and Optical Sciences, Indian Association for the Cultivation of Science,
Kolkata 700 032, India
| | - Debashis Mukherjee
- Raman Center for Atomic, Molecular
and Optical Sciences, Indian Association for the Cultivation of Science,
Kolkata 700 032, India
| |
Collapse
|
15
|
Jeszenszki P, Surján PR, Szabados Á. Spin-adaptation and redundancy in state-specific multireference perturbation theory. J Chem Phys 2013; 138:124110. [DOI: 10.1063/1.4795436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Bhaskaran-Nair K, Ma W, Krishnamoorthy S, Villa O, van Dam HJJ, Aprà E, Kowalski K. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU–GPU Systems. J Chem Theory Comput 2013; 9:1949-57. [DOI: 10.1021/ct301130u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kiran Bhaskaran-Nair
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| | - Wenjing Ma
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| | - Sriram Krishnamoorthy
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| | - Oreste Villa
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| | - Hubertus J. J. van Dam
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| | - Edoardo Aprà
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular
Sciences Laboratory,
Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999,
Richland, Washington 99352, United States
| |
Collapse
|
17
|
Köhn A, Hanauer M, Mück LA, Jagau TC, Gauss J. State-specific multireference coupled-cluster theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1120] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Sinha D, Maitra R, Mukherjee D. Development and applications of a unitary group adapted state specific multi-reference coupled cluster theory with internally contracted treatment of inactive double excitations. J Chem Phys 2012; 137:094104. [DOI: 10.1063/1.4747702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Sen S, Shee A, Mukherjee D. Formulation and implementation of a unitary group adapted state universal multi-reference coupled cluster (UGA-SUMRCC) theory: Excited and ionized state energies. J Chem Phys 2012; 137:074104. [DOI: 10.1063/1.4742058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Jagau TC, Gauss J. Linear-response theory for Mukherjee's multireference coupled-cluster method: Excitation energies. J Chem Phys 2012; 137:044116. [DOI: 10.1063/1.4734309] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Jagau TC, Gauss J. Linear-response theory for Mukherjee's multireference coupled-cluster method: Static and dynamic polarizabilities. J Chem Phys 2012; 137:044115. [DOI: 10.1063/1.4734308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Maitra R, Sinha D, Mukherjee D. Unitary group adapted state-specific multi-reference coupled cluster theory: Formulation and pilot numerical applications. J Chem Phys 2012; 137:024105. [DOI: 10.1063/1.4731341] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Jagau TC, Gauss J. Ground and excited state geometries via Mukherjee’s multireference coupled-cluster method. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Evangelista FA, Gauss J. On the approximation of the similarity-transformed Hamiltonian in single-reference and multireference coupled cluster theory. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Mahapatra US, Chattopadhyay S. Diagnosis of the performance of the state-specific multireference coupled-cluster method with different truncation schemes. J Comput Chem 2012; 33:1285-303. [PMID: 22419455 DOI: 10.1002/jcc.22960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/06/2022]
Abstract
We have tested the linked version of a iterative (partial) triples correction for the Jeziorski-Monkhorst ansatz based state-specific multireference coupled cluster (SS-MRCC) approach with singles and doubles (SD) excitations [abbreviated as SS-MRCCSDT-1a and SS-MRCCSDT-1a+d]. The assessments of SS-MRCCSDT-1a and SS-MRCCSDT-1a+d schemes have been performed on the ground potential energy surface (PES) of P4, Li(2),Be(2) systems which demand the MR description, and on study of the excitation energy between the ground and first excited state for P4 system. Illustrations in the isomerization of cyclobutadiene also show the power of the schemes. One of the designed features of the SS-MRCCSDT-n methods introduced here is that they do not require storage of the triples amplitudes. In the entire range of geometries, we found a definite improvement provided by SS-MRCC with SDT-1a and SDT-1a+d schemes over the standard SD one. In the nondegenerate regions of PES, the closeness of the performance of the single-reference CC to the SS-MRCC methods increases after inclusion of even partial triple excitations. Generally, the performance of the SS-MRCCSDT-1a+d approach is closer to the corresponding full configuration interaction (FCI) one than to the SS-MRCCSDT-1a specially in the degenerate geometries (as is evident from nonparallelism error). The deviation from FCI for the first excited state of the P4 model using various SS-MRCC theories with different truncation schemes obtained by converging on the second root of the effective Hamiltonian has also been reported. We also compare our results with the current generation state-of-the-art single and multireference CC calculations to envisage the usefulness of the present approach. Initial implementation indicates that the SS-MRCCSDT-n formalism can provide not only reliable excitation energies and barrier height even when used in a relatively small model space, but also offers a considerable promise in generating the entire energy surface with low nonparallelity error.
Collapse
Affiliation(s)
- Uttam Sinha Mahapatra
- Department of Physics, Maulana Azad College, 8 Rafi Ahmed KidwaiRoad, Kolkata 700013, India.
| | | |
Collapse
|
26
|
Evangelista FA, Hanauer M, Köhn A, Gauss J. A sequential transformation approach to the internally contracted multireference coupled cluster method. J Chem Phys 2012; 136:204108. [DOI: 10.1063/1.4718704] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
27
|
Das S, Pathak S, Datta D, Mukherjee D. Inactive excitations in Mukherjee's state-specific multireference coupled cluster theory treated with internal contraction: Development and applications. J Chem Phys 2012; 136:164104. [DOI: 10.1063/1.3703312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Haunschild R, Mao S, Mukherjee D, Klopper W. A universal explicit electron correlation correction applied to Mukherjee’s multi-reference perturbation theory. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Mao S, Cheng L, Liu W, Mukherjee D. A spin-adapted size-extensive state-specific multi-reference perturbation theory with various partitioning schemes. II. Molecular applications. J Chem Phys 2012; 136:024106. [DOI: 10.1063/1.3672085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Mao S, Cheng L, Liu W, Mukherjee D. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments. J Chem Phys 2012; 136:024105. [DOI: 10.1063/1.3672083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Das S, Kállay M, Mukherjee D. Superior performance of Mukherjee’s state-specific multi-reference coupled-cluster theory at the singles and doubles truncation scheme with localized active orbitals. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Demel O, Kedžuch S, Švaňa M, Ten-no S, Pittner J, Noga J. An explicitly correlated Mukherjee's state specific coupled cluster method: development and pilot applications. Phys Chem Chem Phys 2012; 14:4753-62. [DOI: 10.1039/c2cp23198k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Lyakh DI, Musiał M, Lotrich VF, Bartlett RJ. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem Rev 2011; 112:182-243. [DOI: 10.1021/cr2001417] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry I. Lyakh
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Monika Musiał
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Victor F. Lotrich
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Ghosh A. Ab initio wavefunctions in bioinorganic chemistry: More than a succès d'estime? J Biol Inorg Chem 2011; 16:819-20. [PMID: 21755384 PMCID: PMC3139065 DOI: 10.1007/s00775-011-0816-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 12/02/2022]
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, Norway.
| |
Collapse
|
35
|
Evangelista FA. Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better. J Chem Phys 2011; 134:224102. [DOI: 10.1063/1.3598471] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
36
|
Datta D, Kong L, Nooijen M. A state-specific partially internally contracted multireference coupled cluster approach. J Chem Phys 2011; 134:214116. [DOI: 10.1063/1.3592494] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Hanauer M, Köhn A. Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. J Chem Phys 2011; 134:204111. [DOI: 10.1063/1.3592786] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Szabados A. Sensitivity analysis of state-specific multireference perturbation theory. J Chem Phys 2011; 134:174113. [DOI: 10.1063/1.3585604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Agnes Szabados
- Laboratory of Theoretical Chemistry, Loránd Eötvös University, Budapest, Hungary.
| |
Collapse
|