1
|
Li R, Fan H, Chen Y, Huang J, Liu GL, Huang L. Application of nanoplasmonic biosensors based on nanoarrays in biological and chemical detection. OPTICS EXPRESS 2023; 31:21586-21613. [PMID: 37381254 DOI: 10.1364/oe.470786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 06/30/2023]
Abstract
Technological innovation, cost effectiveness, and miniaturization are key factors that determine the commercial adaptability and sustainability of sensing platforms. Nanoplasmonic biosensors based on nanocup or nanohole arrays are attractive for the development of various miniaturized devices for clinical diagnostics, health management, and environmental monitoring. In this review, we discuss the latest trends in the engineering and development of nanoplasmonic sensors as biodiagnostic tools for the highly sensitive detection of chemical and biological analytes. We focused on studies that have explored flexible nanosurface plasmon resonance systems using a sample and scalable detection approach in an effort to highlight multiplexed measurements and portable point-of-care applications.
Collapse
|
2
|
Sahu A, Singh P, Singh P, Singh Gahlot AP, Mehrotra R. Simple and rapid biogenic synthesis of colloidal silver and gold nanoparticles using Aegle marmelos fruit for SERS detection of DNA. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aman Sahu
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pankaj Singh
- Department of Physics, Deshbandhu College, University of Delhi, New Delhi, India
| | | | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
3
|
Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Anal Chim Acta 2021; 1185:338842. [PMID: 34711322 DOI: 10.1016/j.aca.2021.338842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022]
Abstract
Nanoplasmonic biosensing shows an immense potential to satisfy the needs of the global health industry - low-cost, fast, and portable automated systems; highly sensitive and real-time detection; multiplexing and miniaturization. In this review, we presented the theory of nanoplasmonic biosensing for popular detection schemes - SPR, LSPR, and EOT - and underline the consideration for nanostructure design, material selection, and their effects on refractometric sensing performance. Later, we covered the bottom-up and top-down nanofabrication methods for nanoplasmonic biosensors. Subsequently, we reviewed the recent examples of nanoplasmonic biosensors over a wide range of clinically relevant analytes in the diagnosis and prognosis of a wide range of diseases and conditions such as biomarker proteins, infectious bacteria, viral agents. Finally, we discussed the challenges of nanoplasmonic biosensing toward clinical translation and proposed strategic avenues to be competitive against current clinical detection methods. Hopefully, nanoplasmonic biosensing can realize its potential through successful demonstrations of clinical translation in the upcoming years.
Collapse
|
4
|
Lathika S, Raj A, Sen AK. LSPR based on-chip detection of dengue NS1 antigen in whole blood. RSC Adv 2021; 11:33770-33780. [PMID: 35497567 PMCID: PMC9042277 DOI: 10.1039/d1ra05009e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 01/23/2023] Open
Abstract
The development of a biosensor for rapid and quantitative detection of the dengue virus continues to remain a challenge. We report a lab-on-chip device that combines membrane-based blood plasma separation and a localized surface plasmon resonance (LSPR) based biosensor for on-chip detection of dengue NS1 antigen from a few drops of blood. The LSPR effect is realized by irradiating UV-NIR light having a spectral peak at 655 nm onto nanostructures fabricated via thermal annealing of a thin metal film. We study the effect of the resulting metal nanostructures on the LSPR performance in terms of sensitivity and limit of detection, by annealing silver films at temperatures ranging from 100 to 500 °C. The effect of annealing temperature on the nanostructure size and uniformity and the resulting optical characteristics are investigated. Further, the binding between non-targeted blood plasma proteins and NS1-antibody-functionalized nanostructures on the LSPR performance is studied by considering different blocking mechanisms. Using a nanostructure annealed at 200 °C and 2X-phosphate buffer saline with 0.05% Tween-20 as the blocking buffer, from 10 μL of whole blood, the device can detect NS1 antigen at a concentration as low as 0.047 μg mL-1 within 30 min. Finally, we demonstrate the detection of NS1 in the blood samples of dengue-infected patients and validate our results with those obtained from the gold-standard ELISA test.
Collapse
Affiliation(s)
- S Lathika
- Fluid Systems Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai India
| | - A Raj
- Department of Mechanical Engineering, Indian Institute of Technology Patna Patna India
| | - A K Sen
- Fluid Systems Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai India
- Micro Nano Bio Fluidics Group, Indian Institute of Technology Madras Chennai India
| |
Collapse
|
5
|
Olafsson A, Busche JA, Araujo JJ, Maiti A, Idrobo JC, Gamelin DR, Masiello DJ, Camden JP. Electron Beam Infrared Nano-Ellipsometry of Individual Indium Tin Oxide Nanocrystals. NANO LETTERS 2020; 20:7987-7994. [PMID: 32870693 DOI: 10.1021/acs.nanolett.0c02772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Leveraging recent advances in electron energy monochromation and aberration correction, we record the spatially resolved infrared plasmon spectrum of individual tin-doped indium oxide nanocrystals using electron energy-loss spectroscopy (EELS). Both surface and bulk plasmon responses are measured as a function of tin doping concentration from 1-10 atomic percent. These results are compared to theoretical models, which elucidate the spectral detuning of the same surface plasmon resonance feature when measured from aloof and penetrating probe geometries. We additionally demonstrate a unique approach to retrieving the fundamental dielectric parameters of individual semiconductor nanocrystals via EELS. This method, devoid from ensemble averaging, illustrates the potential for electron-beam ellipsometry measurements on materials that cannot be prepared in bulk form or as thin films.
Collapse
Affiliation(s)
- Agust Olafsson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jacob A Busche
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jose J Araujo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arpan Maiti
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Oprica L, Andries M, Sacarescu L, Popescu L, Pricop D, Creanga D, Balasoiu M. Citrate-silver nanoparticles and their impact on some environmental beneficial fungi. Saudi J Biol Sci 2020; 27:3365-3375. [PMID: 33304144 PMCID: PMC7715440 DOI: 10.1016/j.sjbs.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Colloidal suspensions of silver nanoparticles (AgNPs) with surface modified by capping with citrate ions were synthesized by chemical reduction method. Transmission and Scanning Electron Microscopy as well as darkfield Optical Microscopy provided information on the nanoparticle morphology, with fine symmetrical grains and log-normal fitted size distribution. Small Angle X-ray Scattering method allowed theoretical confirmation of colloidal silver nanoparticle fine granularity, based on measurements in the native fluid sample. UV–Vis spectrophotometry allowed studying the Localized Surface Plasmon Resonance band versus the stability of the citrate-AgNP sample after storage and after UV-C exposure. The colloidal AgNP impact on Phanerochaete chrysosporium environmental microorganisms was studied by specific biochemical investigations. Silver released from the colloidal suspension of AgNPs was supposed to induce changes in some antioxidant enzymes and in some enzymes of Krebs’ cycle. Catalase activity was moderately changed (an increase with over 50%) as well as superoxide dismutase activity, while the diminution of the activities of four dehydrogenases synthesized in the fungus mycelium was emphasized also: a decrease with about 60% for malate dehydrogenase, with over 50% for isocitrate dehydrogenase and succinate dehydrogenase and with about 40% for alpha-ketoglutarate dehydrogenase. These findings suggested the nano-toxicological issues of citrate-AgNPs impact on the environmental beneficial microorganisms.
Collapse
Affiliation(s)
- Lacramioara Oprica
- Alexandru Ioan Cuza" University, Faculty of Biology, Blvd. Carol I, 11 A, Iasi, Romania
| | - Maria Andries
- Alexandru Ioan Cuza" University, Faculty of Physics, Blvd. Carol I, 11 A, Iasi, Romania
| | - Liviu Sacarescu
- Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Larisa Popescu
- Alexandru Ioan Cuza" University, Faculty of Physics, Blvd. Carol I, 11 A, Iasi, Romania
| | - Daniela Pricop
- Alexandru Ioan Cuza" University, Faculty of Physics, Blvd. Carol I, 11 A, Iasi, Romania
| | - Dorina Creanga
- Alexandru Ioan Cuza" University, Faculty of Physics, Blvd. Carol I, 11 A, Iasi, Romania
| | - Maria Balasoiu
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, 141980, Moscow Region, Russian Federation
| |
Collapse
|
7
|
Gezgin SY, Kepceoğlu A, Gündoğdu Y, Zongo S, Zawadzka A, Kiliç HŞ, Sahraoui B. Effect of Ar Gas Pressure on LSPR Property of Au Nanoparticles: Comparison of Experimental and Theoretical Studies. NANOMATERIALS 2020; 10:nano10061071. [PMID: 32486386 PMCID: PMC7352769 DOI: 10.3390/nano10061071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
In this study, the thin films were produced by using pulsed laser deposition (PLD) technique from gold (Au) nanoparticles deposited on two kinds of substrates under different argon (Ar) gas pressure. Microscope glass slides and silicon (100) wafers were used as amorphous and crystal substrates. The films were deposited under 2 × 10−3 mbar, 1 × 10−2 mbar, 2 × 10−2 mbar argon (Ar) ambient gas pressure. Effect of the background gas pressure on the plasma plume of the ablated Au nanoparticles was investigated in details. Morphology of Au nanoparticle thin films was investigated by means of atomic force microscopy (AFM) technique. Absorption spectra of Au nanoparticles were examined by using UV-Vis spectrometry. Extinction spectra of Au nanoparticles were calculated by using metallic nano particles boundary element method (MNPBEM) simulation programme. Both experimental spectra and simulation data for Au nanoparticles were obtained and compared in this work. It was concluded that they are also in good agreement with literature data. The measurements and the simulation results showed that localized surface plasmon resonance (LSPR) peaks for Au nanoparticles were located in the near infrared region (NIR) because of the larger size of the disk-like shape of Au nanoparticles, and the near-field coupling between Au nanoparticles. It was demonstrated that as the ambient gas (Ar) pressure was increased, the size and the density of Au nanoparticles on the substrate were decreased and the LSPR peak shifts toward the short wavelength region in the spectrum. This shift has been explained by the changes in the morphology of produced thin films.
Collapse
Affiliation(s)
- Serap Yiğit Gezgin
- Department of Physics, Faculty of Science, University of Selcuk, Selcuklu 42031, Konya, Turkey; (S.Y.G.); (A.K.)
| | - Abdullah Kepceoğlu
- Department of Physics, Faculty of Science, University of Selcuk, Selcuklu 42031, Konya, Turkey; (S.Y.G.); (A.K.)
| | - Yasemin Gündoğdu
- Department of Electric and Energy, Kadınhanı Faik İçil Vocational High School, University of Selçuk, Selçuklu 42031, Konya, Turkey;
| | - Sidiki Zongo
- Department of Physics, LPCE, Joseph KI-ZERBO University, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso;
| | - Anna Zawadzka
- Department of Applied Physics, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland;
| | - Hamdi Şükür Kiliç
- Department of Physics, Faculty of Science, University of Selcuk, Selcuklu 42031, Konya, Turkey; (S.Y.G.); (A.K.)
- Directorate of High Technology Research and Application Center, University of Selcuk, Selcuklu 2031, Konya, Turkey
- Correspondence: (H.Ş.K.); (B.S.)
| | - Bouchta Sahraoui
- University of Angers, MOLTECH Anjou, CNRS UMR 6200, 2 Bd Lavoisier, F-49045 Angers, France
- Correspondence: (H.Ş.K.); (B.S.)
| |
Collapse
|
8
|
Vermeulen LMP, Fraire JC, Raes L, De Meester E, De Keulenaer S, Van Nieuwerburgh F, De Smedt S, Remaut K, Braeckmans K. Photothermally Triggered Endosomal Escape and Its Influence on Transfection Efficiency of Gold-Functionalized JetPEI/pDNA Nanoparticles. Int J Mol Sci 2018; 19:E2400. [PMID: 30110965 PMCID: PMC6121899 DOI: 10.3390/ijms19082400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022] Open
Abstract
Plasmonic nanoparticles for drug delivery have attracted increasing interest over the last few years. Their localized surface plasmon resonance causes photothermal effects on laser irradiation, which allows for delivering drugs in a spatio-temporally controlled manner. Here, we explore the use of gold nanoparticles (AuNP) as carriers for pDNA in combination with pulsed laser irradiation to induce endosomal escape, which is currently considered to be one of the major bottlenecks in macromolecular drug delivery on the intracellular level. In particular, we evaluate nanocomplexes composed of JetPEI (polyethylenimine)pDNA and 10 nm AuNP, which do not exhibit endosomal escape by themselves. After incubating HeLa cells with these complexes, we evaluated endosomal escape and transfection efficiency using low- and high-energy laser pulses. At low laser energy heat is produced by the nanocomplexes, while, at higher laser energy, explosive vapour nanobubbles (VNB) are formed. We investigated the ability of heat transfer and VNB formation to induce endosomal escape and we examine the integrity of pDNA cargo after inducing both photothermal effects. We conclude that JetPEI/pDNA/AuNP complexes are unable to induce meaningful transfection efficiencies because laser treatment causes either dysfunctionality of the cargo when VNB are formed or forms too small pores in the endosomal membrane to allow pDNA to escape in case of heating. We conclude that laser-induced VNB is the most suitable to induce effective pDNA endosomal escape, but a different nanocomplex structure will be required to keep the pDNA intact.
Collapse
Affiliation(s)
- Lotte M P Vermeulen
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sarah De Keulenaer
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Katrien Remaut
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
- IEMN UMR 8520 and Laboratoire de Physique des Lasers, Atomes et Molécules. UMR 8523, Université de Lille, F-59655 Villeneuve d'Ascq CEDEX, France.
| |
Collapse
|
9
|
XU G, ZHU Y, PANG J. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod. ANAL SCI 2017; 33:223-227. [DOI: 10.2116/analsci.33.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Gang XU
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University
| | - Yuhua ZHU
- School of Chemistry & Chemical Engineering, Nanjing University
| | - Jie PANG
- School of Chemistry & Chemical Engineering, Nanjing University
| |
Collapse
|
10
|
Zhu S, Li H, Yang M, Pang SW. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection. NANOTECHNOLOGY 2016; 27:295101. [PMID: 27275952 DOI: 10.1088/0957-4484/27/29/295101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quasi three-dimensional (3D) plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars and Au nanoholes on the bottom were developed and fabricated using nanoimprint lithography with simultaneous thermal and UV exposure. These 3D plasmonic nanostructures were used to detect cell concentration of lung cancer A549 cells, retinal pigment epithelial (RPE) cells, and breast cancer MCF-7 cells. Nanoimprint technology has the advantage of producing high uniformity plasmonic nanostructures for such biosensors. Multiple resonance modes were observed in these quasi 3D plasmonic nanostructures. The hybrid coupling of localized surface plasmon resonances and Fabry-Perot cavity modes in the quasi 3D nanostructures resulted in high sensitivity of 496 nm/refractive index unit. The plasmonic resonance peak wavelength and sensitivity could be tuned by varying the Au thickness. Resonance peak shifts for different cells at the same concentration were distinct due to their different cell area and confluency. The cell concentration detection limit covered a large range of 5 × 10(2) to 1 × 10(7) cells ml(-1) with these new plasmonic nanostructures. They also provide a large resonance peak shift of 51 nm for as little as 0.08 cells mm(-2) of RPE cells for high sensitivity cell detection.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong. Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
11
|
Wang Y, Zou HY, Huang CZ. Real-time monitoring of oxidative etching on single Ag nanocubes via light-scattering dark-field microscopy imaging. NANOSCALE 2015; 7:15209-15213. [PMID: 26316076 DOI: 10.1039/c5nr04234h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A low-cost and easily-conducted light-scattering dark-field microscopy imaging (iDFM) technique for real-time and in situ monitoring of the oxidative etching on a single Ag nanocube was presented by using an ordinary dark-field microscopy system, which provides an alternative approach to study the behaviors of metal nanoparticles in chemical reactions and biological processes at the single nanoparticle level.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences and College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | |
Collapse
|
12
|
Yang JL, Cao SH, Liu Q, Zhao S, Zheng YB, Li YQ. Strong fluorescence emission localized at a tapered silver-plated sub-wavelength pore. NEW J CHEM 2015. [DOI: 10.1039/c4nj01094a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Up to 200 times fluorescence enhancement was observed inside a tapered silver-plated sub-wavelength pore.
Collapse
Affiliation(s)
- Jin-Lei Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Shuang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Yu-Bin Zheng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|
13
|
Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence. Cytometry A 2013; 83:962-72. [PMID: 23943267 DOI: 10.1002/cyto.a.22342] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/12/2023]
Abstract
The cellular uptake of different sized silver nanoparticles (AgNP) (10, 50, and 75 nm) coated with polyvinylpyrrolidone (PVP) or citrate on a human derived retinal pigment epithelial cell line (ARPE-19) was detected by flow cytometry following 24-h incubation of the cells with AgNP. A dose dependent increase of side scatter and far red fluorescence was observed with both PVP and citrate-coated 50 nm or 75 nm silver particles. Using five different flow cytometers, a far red fluorescence signal in the 700-800 nm range increased as much as 100 times background as a ratio comparing the intensity measurements of treated sample and controls. The citrate-coated silver nanoparticles (AgNP) revealed slightly more side scatter and far red fluorescence than did the PVP coated silver nanoparticles. This increased far red fluorescence signal was observed with 50 and 75 nm particles, but not with 10 nm particles. Morphological evaluation by dark field microscopy showed silver particles (50 and 75 nm) clumped and concentrated around the nucleus. One possible hypothesis to explain the emission of far red fluorescence from cells incubated with silver nanoparticles is that the silver nanoparticles inside cells agglomerate into small nano clusters that form surface plasmon resonance which interacts with laser light to emit a strong far red fluorescence signal. The results demonstrate that two different parameters (side scatter and far red fluorescence) on standard flow cytometers can be used to detect and observe metallic nanoparticles inside cells. The strength of the far red fluorescence suggests that it may be particularly useful for applications that require high sensitivity. © Published 2013 Wiley-Periodicals, Inc.
Collapse
Affiliation(s)
- R M Zucker
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicology Assessment Division (MD-67), Research Triangle Park, NC 27711
| | | | | | | | | | | |
Collapse
|
14
|
Prasad RY, Wallace K, Daniel KM, Tennant AH, Zucker RM, Strickland J, Dreher K, Kligerman AD, Blackman CF, Demarini DM. Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS NANO 2013; 7:1929-1942. [PMID: 23387956 DOI: 10.1021/nn302280n] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus assay, MN) in vitro, no study has systematically assessed the influence of medium composition on the physicochemical characteristics and genotoxicity of TiO2 nanoparticles. We assessed TiO2 nanoparticle agglomeration, cellular interaction, induction of genotoxicity, and influence on cell cycle in human lung epithelial cells using three different nanoparticle-treatment media: keratinocyte growth medium (KGM) plus 0.1% bovine serum albumin (KB); a synthetic broncheoalveolar lavage fluid containing PBS, 0.6% bovine serum albumin and 0.001% surfactant (DM); or KGM with 10% fetal bovine serum (KF). The comet assay showed that TiO2 nanoparticles induced similar amounts of DNA damage in all three media, independent of the amount of agglomeration, cellular interaction, or cell-cycle changes measured by flow cytometry. In contrast, TiO2 nanoparticles induced MN only in KF, which is the medium that facilitated the lowest amount of agglomeration, the greatest amount of nanoparticle cellular interaction, and the highest population of cells accumulating in S phase. These results with TiO2 nanoparticles in KF demonstrate an association between medium composition, particle uptake, and nanoparticle interaction with cells, leading to chromosomal damage as measured by the MN assay.
Collapse
Affiliation(s)
- Raju Y Prasad
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Feuz L, Jonsson MP, Höök F. Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. NANO LETTERS 2012; 12:873-879. [PMID: 22257106 DOI: 10.1021/nl203917e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Optical sensors utilizing the principle of localized surface plasmon resonance (LSPR) offer the advantage of a simple label-free mode of operation, but the sensitivity is typically limited to a very thin region close to the surface. In bioanalytical sensing applications, this can be a significant drawback, in particular since the surface needs to be coated with a recognition layer in order to ensure specific detection of target molecules. We show that the signal upon protein binding decreases dramatically with increasing thickness of the recognition layer, highlighting the need for thin high quality recognition layers compatible with LSPR sensors. The effect is particularly strong for structures that provide local hot spots with highly confined fields, such as in the gap between pairs of gold disks. While our results show a significant improvement in sensor response for pairs over single gold disks upon binding directly to the gold surface, disk pairs did not provide larger signal upon binding of proteins to a recognition layer (already for around 3 nm thin layers) located on the gold. Local plasmonic hot spots are however shown advantageous in combination with directed binding to the hot spots. This was demonstrated using a structure consisting of three surface materials (gold, titanium dioxide, and silicon dioxide) and a new protocol for material-selective surface chemistry of these three materials, which allows for controlled binding only in the gap between pairs of disks. Such a design increased the signal obtained per bound molecule by a factor of around four compared to binding to single disks.
Collapse
Affiliation(s)
- Laurent Feuz
- Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | | |
Collapse
|