1
|
Mejuto-Zaera C. Quantum embedding for molecules using auxiliary particles - the ghost Gutzwiller Ansatz. Faraday Discuss 2024; 254:653-681. [PMID: 39087725 DOI: 10.1039/d4fd00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Strong/static electronic correlation mediates the emergence of remarkable phases of matter, and underlies the exceptional reactivity properties in transition metal-based catalysts. Modeling strongly correlated molecules and solids calls for multi-reference Ansätze, which explicitly capture the competition of energy scales characteristic of such systems. With the efficient computational screening of correlated solids in mind, the ghost Gutzwiller (gGut) Ansatz has been recently developed. This is a variational Ansatz which can be formulated as a self-consistent embedding approach, describing the system within a non-interacting, quasiparticle model, yet providing accurate spectra in both low and high energy regimes. Crucially, small fragments of the system are identified as responsible for the strong correlation, and are therefore enhanced by adding a set of auxiliary orbitals, the ghosts. These capture many-body correlations through one-body fluctuations and subsequent out-projection when computing physical observables. gGut has been shown to accurately describe multi-orbital lattice models at modest computational cost. In this work, we extend the gGut framework to strongly correlated molecules, for which it holds special promise. Indeed, despite the asymmetric embedding treatment, the quasiparticle Hamiltonian effectively describes all major sources of correlation in the molecule: strong correlation through the ghosts in the fragment, and dynamical correlation through the quasiparticle description of its environment. To adapt the gGut Ansatz for molecules, we address the fact that, unlike in the lattice model previously considered, electronic interactions in molecules are not local. Hence, we explore a hierarchy of approximations of increasing accuracy capturing interactions between fragments and environment, and within the environment, and discuss how these affect the embedding description of correlations in the whole molecule. We will compare the accuracy of the gGut model with established methods to capture strong correlation within active space formulations, and assess the realistic use of this novel approximation to the theoretical description of correlated molecular clusters.
Collapse
Affiliation(s)
- Carlos Mejuto-Zaera
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
2
|
Aliverti-Piuri D, Chatterjee K, Ding L, Liao K, Liebert J, Schilling C. What can quantum information theory offer to quantum chemistry? Faraday Discuss 2024; 254:76-106. [PMID: 39099471 DOI: 10.1039/d4fd00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
It is the ultimate goal of this work to foster synergy between quantum chemistry and the flourishing field of quantum information theory. For this, we first translate quantum information concepts, such as entanglement and correlation, into the context of quantum chemical systems. In particular, we establish two conceptually distinct perspectives on 'electron correlation', leading to a notion of orbital and particle correlation. We then demonstrate that particle correlation equals total orbital correlation minimized over all orbital bases. Accordingly, particle correlation resembles the minimal, thus intrinsic, complexity of many-electron wave functions, while orbital correlation quantifies their complexity relative to a basis. We illustrate these concepts of intrinsic and extrinsic correlation complexity in molecular systems, which also manifests the crucial link between the two correlation pictures. Our results provide theoretical justification for the long-favored natural orbitals for simplifying electronic structures, and open new pathways for developing more efficient approaches towards the electron correlation problem.
Collapse
Affiliation(s)
- Damiano Aliverti-Piuri
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Kaustav Chatterjee
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Lexin Ding
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Ke Liao
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Julia Liebert
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Christian Schilling
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| |
Collapse
|
3
|
Li J, Zhu T. Restoring translational symmetry in periodic all-orbital dynamical mean-field theory simulations. Faraday Discuss 2024; 254:641-652. [PMID: 39076013 DOI: 10.1039/d4fd00068d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Dynamical mean-field theory (DMFT) and its cluster extensions provide an efficient Green's function formalism to simulate spectral properties of periodic systems at the quantum many-body level. However, traditional cluster DMFT breaks translational invariance in solid-state materials, and the best strategy to capture non-local correlation effects within cluster DMFT remains elusive. In this work, we investigate the use of overlapping atom-centered impurity fragments in recently-developed ab initio all-orbital DMFT, where all local orbitals within the impurity are treated with high-level quantum chemistry impurity solvers. We demonstrate how the translational symmetry of the lattice self-energy can be restored by designing symmetry-adapted embedding problems, which results in an improved description of spectral functions in two-dimensional boron nitride monolayers and graphene at the levels of many-body perturbation theory (GW) and coupled-cluster theory. Furthermore, we study the convergence of self-energy and density of states as the embedding size is systematically expanded in one-shot and self-consistent DMFT calculations.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| | - Tianyu Zhu
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Hu G, Liu P, Jensen L. Calculating Molecular Polarizabilities Using Exact Frozen Density Embedding with External Orthogonality. J Chem Theory Comput 2024. [PMID: 39105755 DOI: 10.1021/acs.jctc.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Frozen density embedding (FDE) with freeze-thaw cycles is a formally exact embedding scheme. In practice, this method is limited to systems with small density overlaps when approximate nonadditive kinetic energy functionals are used. It has been shown that the use of approximate nonadditive kinetic energy functionals can be avoided when external orthogonality (EO) is enforced, and FDE can then generate exact results even for strongly overlapping subsystems. In this work, we present an implementation of exact FDEc-EO (coupled FDE TDDFT with EO) for the calculation of polarizabilities in the Amsterdam density functional program package. EO is enforced using the level-shift projection operator method, which ensures that orbitals between fragments are orthogonal. For pure functionals, we show that only the symmetric EO contributions to the induced density matrix are needed. This leads to a simplified implementation for the calculation of polarizability that can exactly reproduce the supermolecular TDDFT results. We further discuss the limitation of exact FDEc-EO in interpreting subsystem polarizabilities due to the nonunique partitioning of the total density. We show that this limitation is due to the fact that subsystem polarizability partitioning is dependent on how the subsystems are initially polarized. As supermolecular virtual orbitals are exactly reproduced, this dependence is attributed to the description of the occupied orbitals. In contrast, for excitations of subsystems that are localized within one subsystem, we show that the excitation energies are stable with respect to the order of polarization. This observation shows that impacts from the nonunique nature of exact FDE on subsystem properties can be minimized by better fragmentation of the supermolecular systems if the property is localized. For global properties like polarizability, this is not the case, and nonuniqueness remains independent of the fragmentation used.
Collapse
Affiliation(s)
- Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Pengchong Liu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Choudhury A, Santra S, Ghosh D. Understanding the Photoprocesses in Biological Systems: Need for Accurate Multireference Treatment. J Chem Theory Comput 2024; 20:4951-4964. [PMID: 38864715 DOI: 10.1021/acs.jctc.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Light-matter interaction is crucial to life itself and revolves around many of the central processes in biology. The need for understanding these photochemical and photophysical processes cannot be overemphasized. Interaction of light with biological systems starts with the absorption of light and subsequent phenomena that occur in the excited states of the system. However, excited states are typically difficult to understand within the mean field approximation of quantum chemical methods. Therefore, suitable multireference methods and methodologies have been developed to understand these phenomena. In this Perspective, we will describe a few methods and methodologies suitable for these descriptions and discuss some persisting difficulties.
Collapse
Affiliation(s)
- Arpan Choudhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Dhawan D, Zgid D, Motta M. Quantum Algorithm for Imaginary-Time Green's Functions. J Chem Theory Comput 2024; 20:4629-4638. [PMID: 38761142 DOI: 10.1021/acs.jctc.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Green's function methods lead to ab initio, systematically improvable simulations of molecules and materials while providing access to multiple experimentally observable properties such as the density of states and the spectral function. The calculation of the exact one-particle Green's function remains a significant challenge for classical computers and was attempted only on very small systems. Here, we present a hybrid quantum-classical algorithm to calculate the imaginary-time one-particle Green's function. The proposed algorithm combines the variational quantum eigensolver and the quantum subspace expansion methods to calculate Green's function in Lehmann's representation. We demonstrate the validity of this algorithm by simulating H2 and H4 on quantum simulators and on IBM's quantum devices.
Collapse
Affiliation(s)
- Diksha Dhawan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mario Motta
- IBM Quantum, Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
7
|
Jangid B, Hermes MR, Gagliardi L. Core Binding Energy Calculations: A Scalable Approach with the Quantum Embedding-Based Equation-of-Motion Coupled-Cluster Method. J Phys Chem Lett 2024; 15:5954-5963. [PMID: 38810243 DOI: 10.1021/acs.jpclett.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We investigated the use of density matrix embedding theory to facilitate the computation of core ionization energies (IPs) of large molecules at the equation-of-motion coupled-cluster singles doubles with perturbative triples (EOM-CCSD*) level in combination with the core-valence separation (CVS) approximation. The unembedded IP-CVS-EOM-CCSD* method with a triple-ζ basis set produced ionization energies within 1 eV of experiment with a standard deviation of ∼0.2 eV for the core65 data set. The embedded variant contributed very little systematic error relative to the unembedded method, with a mean unsigned error of 0.07 eV and a standard deviation of ∼0.1 eV, in exchange for accelerating the calculations by many orders of magnitude. By employing embedded EOM-CC methods, we computed the core ionization energies of the uracil hexamer, doped fullerene, and chlorophyll molecule, utilizing up to ∼4000 basis functions within 1 eV from experimental values. Such calculations are not currently possible with the unembedded EOM-CC method.
Collapse
Affiliation(s)
- Bhavnesh Jangid
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Kökcü E, Labib HA, Freericks JK, Kemper AF. A linear response framework for quantum simulation of bosonic and fermionic correlation functions. Nat Commun 2024; 15:3881. [PMID: 38719815 PMCID: PMC11079044 DOI: 10.1038/s41467-024-47729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Response functions are a fundamental aspect of physics; they represent the link between experimental observations and the underlying quantum many-body state. However, this link is often under-appreciated, as the Lehmann formalism for obtaining response functions in linear response has no direct link to experiment. Within the context of quantum computing, and via a linear response framework, we restore this link by making the experiment an inextricable part of the quantum simulation. This method can be frequency- and momentum-selective, avoids limitations on operators that can be directly measured, and can be more efficient than competing methods. As prototypical examples of response functions, we demonstrate that both bosonic and fermionic Green's functions can be obtained, and apply these ideas to the study of a charge-density-wave material on the ibm_auckland superconducting quantum computer. The linear response method provides a robust framework for using quantum computers to study systems in physics and chemistry.
Collapse
Affiliation(s)
- Efekan Kökcü
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Heba A Labib
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - J K Freericks
- Department of Physics, Georgetown University, 37th and O Sts. NW, Washington DC, WA, 20057, USA
| | - A F Kemper
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
9
|
Venturella C, Hillenbrand C, Li J, Zhu T. Machine Learning Many-Body Green's Functions for Molecular Excitation Spectra. J Chem Theory Comput 2024; 20:143-154. [PMID: 38150268 DOI: 10.1021/acs.jctc.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We present a machine learning (ML) framework for predicting Green's functions of molecular systems, from which photoemission spectra and quasiparticle energies at quantum many-body level can be obtained. Kernel ridge regression is adopted to predict self-energy matrix elements on compact imaginary frequency grids from static and dynamical mean-field electronic features, which gives direct access to real-frequency many-body Green's functions through analytic continuation and Dyson's equation. Feature and self-energy matrices are represented in a symmetry-adapted intrinsic atomic orbital plus projected atomic orbital basis to enforce rotational invariance. We demonstrate good transferability and high data efficiency of the proposed ML method across molecular sizes and chemical species by showing accurate predictions of density of states (DOS) and quasiparticle energies at the level of many-body perturbation theory (GW) or full configuration interaction. For the ML model trained on 48 out of 1995 molecules randomly sampled from the QM7 and QM9 data sets, we report the mean absolute errors of ML-predicted highest occupied and lowest unoccupied molecular orbital energies to be 0.13 and 0.10 eV, respectively, compared to GW@PBE0. We further showcase the capability of this method by applying the same ML model to predict DOS for significantly larger organic molecules with up to 44 heavy atoms.
Collapse
Affiliation(s)
- Christian Venturella
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Jiachen Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyu Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Verma S, Mitra A, Jin Y, Haldar S, Vorwerk C, Hermes MR, Galli G, Gagliardi L. Optical Properties of Neutral F Centers in Bulk MgO with Density Matrix Embedding. J Phys Chem Lett 2023; 14:7703-7710. [PMID: 37606586 DOI: 10.1021/acs.jpclett.3c01875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The optical spectra of neutral oxygen vacancies (F0 centers) in the bulk MgO lattice are investigated using density matrix embedding theory. The impurity Hamiltonian is solved with the complete active space self-consistent field and second-order n-electron valence state perturbation theory (NEVPT2-DMET) multireference methods. To estimate defect-localized vertical excitation energies at the nonembedding and thermodynamic limits, a double extrapolation scheme is employed. The extrapolated NEVPT2-DMET vertical excitation energy value of 5.24 eV agrees well with the experimental absorption maxima at 5.03 eV, whereas the excitation energy value of 2.89 eV at the relaxed triplet defect-localized state geometry overestimates the experimental emission at 2.4 eV by only nearly 0.5 eV, indicating the involvement of the triplet-singlet decay pathway.
Collapse
Affiliation(s)
- Shreya Verma
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Abhishek Mitra
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yu Jin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Soumi Haldar
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Christian Vorwerk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew R Hermes
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
11
|
Sekaran S, Bindech O, Fromager E. A unified density matrix functional construction of quantum baths in density matrix embedding theory beyond the mean-field approximation. J Chem Phys 2023; 159:034107. [PMID: 37466226 DOI: 10.1063/5.0157746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
The equivalence in one-electron quantum baths between the practical implementation of density matrix embedding theory (DMET) and the more recent Householder-transformed density matrix functional embedding theory has been shown previously in the standard but special case where the reference full-size (one-electron reduced) density matrix, from which the bath is constructed, is idempotent [S. Yalouz et al., J. Chem. Phys. 157, 214112 (2022)]. We prove mathematically that the equivalence remains valid when the density matrix is not idempotent anymore, thus allowing for the construction of correlated (one-electron) quantum baths. A density-matrix functional exactification of DMET is derived within the present unified quantum embedding formalism. Numerical examples reveal that the embedding cluster can be quite sensitive to the level of density-matrix functional approximation used for computing the reference density matrix.
Collapse
Affiliation(s)
- Sajanthan Sekaran
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Oussama Bindech
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
12
|
Izsák R, Ivanov AV, Blunt NS, Holzmann N, Neese F. Measuring Electron Correlation: The Impact of Symmetry and Orbital Transformations. J Chem Theory Comput 2023; 19:2703-2720. [PMID: 37022051 PMCID: PMC10210250 DOI: 10.1021/acs.jctc.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/07/2023]
Abstract
In this perspective, the various measures of electron correlation used in wave function theory, density functional theory and quantum information theory are briefly reviewed. We then focus on a more traditional metric based on dominant weights in the full configuration solution and discuss its behavior with respect to the choice of the N-electron and the one-electron basis. The impact of symmetry is discussed, and we emphasize that the distinction among determinants, configuration state functions and configurations as reference functions is useful because the latter incorporate spin-coupling into the reference and should thus reduce the complexity of the wave function expansion. The corresponding notions of single determinant, single spin-coupling and single configuration wave functions are discussed and the effect of orbital rotations on the multireference character is reviewed by analyzing a simple model system. In molecular systems, the extent of correlation effects should be limited by finite system size and in most cases the appropriate choices of one-electron and N-electron bases should be able to incorporate these into a low-complexity reference function, often a single configurational one.
Collapse
Affiliation(s)
- Róbert Izsák
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Aleksei V. Ivanov
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Nick S. Blunt
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Nicole Holzmann
- Riverlane, St Andrews House, 59 St Andrews
Street, Cambridge CB2 3BZ, United Kingdom
| | - Frank Neese
- Max-Planck
Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Shee A, Yeh CN, Peng B, Kowalski K, Zgid D. Triple Excitations in Green's Function Coupled Cluster Solver for Studies of Strongly Correlated Systems in the Framework of Self-Energy Embedding Theory. J Phys Chem Lett 2023; 14:2416-2424. [PMID: 36856741 DOI: 10.1021/acs.jpclett.2c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Embedding theories became important approaches used for accurate calculations of both molecules and solids. In these theories, a small chosen subset of orbitals is treated with an accurate method, called an impurity solver, capable of describing higher correlation effects. Ideally, such a chosen fragment should contain multiple orbitals responsible for the chemical and physical behavior of the compound. Handling a large number of chosen orbitals presents a very significant challenge for the current generation of solvers used in the physics and chemistry community. Here, we develop a Green's function coupled cluster singles doubles and triples (GFCCSDT) solver that can be used for a quantitative description in both molecules and solids. This solver allows us to treat orbital spaces that are inaccessible to other accurate solvers. At the same time, GFCCSDT maintains high accuracy of the resulting self-energy. Moreover, in conjunction with the GFCCSD solver, it allows us to test the systematic convergence of computational studies. Developing the CC family of solvers paves the road to fully systematic Green's function embedding calculations in solids. In this paper, we focus on the investigation of GFCCSDT self-energies for a strongly correlated problem of SrMnO3 solid. Subsequently, we apply this solver to solid MnO showing that an approximate variant of GFCCSDT is capable of yielding a high accuracy orbital resolved spectral function.
Collapse
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chia-Nan Yeh
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Peng
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Karol Kowalski
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Izsák R, Riplinger C, Blunt NS, de Souza B, Holzmann N, Crawford O, Camps J, Neese F, Schopf P. Quantum computing in pharma: A multilayer embedding approach for near future applications. J Comput Chem 2023; 44:406-421. [PMID: 35789492 DOI: 10.1002/jcc.26958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023]
Abstract
Quantum computers are special purpose machines that are expected to be particularly useful in simulating strongly correlated chemical systems. The quantum computer excels at treating a moderate number of orbitals within an active space in a fully quantum mechanical manner. We present a quantum phase estimation calculation on F2 in a (2,2) active space on Rigetti's Aspen-11 QPU. While this is a promising start, it also underlines the need for carefully selecting the orbital spaces treated by the quantum computer. In this work, a scheme for selecting such an active space automatically is described and simulated results obtained using both the quantum phase estimation (QPE) and variational quantum eigensolver (VQE) algorithms are presented and combined with a subtractive method to enable accurate description of the environment. The active occupied space is selected from orbitals localized on the chemically relevant fragment of the molecule, while the corresponding virtual space is chosen based on the magnitude of interactions with the occupied space calculated from perturbation theory. This protocol is then applied to two chemical systems of pharmaceutical relevance: the enzyme [Fe] hydrogenase and the photosenzitizer temoporfin. While the sizes of the active spaces currently amenable to a quantum computational treatment are not enough to demonstrate quantum advantage, the procedure outlined here is applicable to any active space size, including those that are outside the reach of classical computation.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Holzmann
- Riverlane Research Ltd, Cambridge, UK.,Astex Pharmaceuticals, Cambridge, UK
| | | | | | - Frank Neese
- Max-Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
15
|
Yalouz S, Sekaran S, Fromager E, Saubanère M. Quantum embedding of multi-orbital fragments using the block-Householder transformation. J Chem Phys 2022; 157:214112. [DOI: 10.1063/5.0125683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Recently, some of the authors introduced the use of the Householder transformation as a simple and intuitive method for embedding local molecular fragments [see Sekaran et al., Phys. Rev. B 104, 035121 (2021) and Sekaran et al., Computation 10, 45 (2022)]. In this work, we present an extension of this approach to the more general case of multi-orbital fragments using the block version of the Householder transformation applied to the one-body reduced density matrix, unlocking the applicability to general quantum chemistry/condensed matter physics Hamiltonians. A step-by-step construction of the block Householder transformation is presented. Both physical and numerical areas of interest of the approach are highlighted. The specific mean-field (noninteracting) case is thoroughly detailed as it is shown that the embedding of a given N spin–orbital fragment leads to the generation of two separated sub-systems: (1) a 2 N spin–orbitals “fragment+bath” cluster that exactly contains N electrons and (2) a remaining cluster’s “environment” described by so-called core electrons. We illustrate the use of this transformation in different cases of embedding scheme for practical applications. We particularly focus on the extension of the previously introduced Local Potential Functional Embedding Theory and Householder-transformed Density Matrix Functional Embedding Theory to the case of multi-orbital fragments. These calculations are realized on different types of systems, such as model Hamiltonians (Hubbard rings) and ab initio molecular systems (hydrogen rings).
Collapse
Affiliation(s)
- Saad Yalouz
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Sajanthan Sekaran
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | | |
Collapse
|
16
|
Qu X, Xu P, Li R, Li G, He L, Ren X. Density Functional Theory Plus Dynamical Mean Field Theory within the Framework of Linear Combination of Numerical Atomic Orbitals: Formulation and Benchmarks. J Chem Theory Comput 2022; 18:5589-5606. [PMID: 36006015 DOI: 10.1021/acs.jctc.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of density functional theory with dynamical mean-field theory (DFT+DMFT) has become a powerful first-principles approach to tackle strongly correlated materials in condensed matter physics. The wide use of this approach relies on robust and easy-to-use implementations, and its implementation in various numerical frameworks will increase its applicability on the one hand and help crosscheck the validity of the obtained results on the other. In this work, we develop a formalism within the linear combination of numerical atomic orbital (NAO) basis set framework, which allows for merging of NAO-based DFT codes with DMFT quantum impurity solvers. The formalism is implemented by interfacing two NAO-based DFT codes with three DMFT impurity solvers, and its validity is testified by benchmark calculations for a wide range of strongly correlated materials, including 3d transition metal compounds, lanthanides, and actinides. Our work not only enables DFT+DMFT calculations using popular and rapidly developing NAO-based DFT code packages but also facilitates the combination of more advanced beyond-DFT methodologies available in these codes with the DMFT machinery.
Collapse
Affiliation(s)
- Xin Qu
- Rocket Force University of Engineering, Xi'an, Shaanxi 710025, China.,CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Xu
- Rocket Force University of Engineering, Xi'an, Shaanxi 710025, China
| | - Rusong Li
- College of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Gang Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Lixin He
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinguo Ren
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
17
|
Local Potential Functional Embedding Theory: A Self-Consistent Flavor of Density Functional Theory for Lattices without Density Functionals. COMPUTATION 2022. [DOI: 10.3390/computation10030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quantum embedding is a divide and conquer strategy that aims at solving the electronic Schrödinger equation of sizeable molecules or extended systems. We establish in the present work a clearer and in-principle-exact connection between density matrix embedding theory (DMET) and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified density-functional approximations, a self-consistent local potential functional embedding theory (LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with our formally exact density-functional embedding theory reveals that a single statically embedded impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a complementary density-functional correlation potential (which is neglected in both DMET and LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple impurities (which would enable to circumvent the modeling of DDs) and its generalization to quantum chemical Hamiltonians are left for future work.
Collapse
|
18
|
Abstract
Quantum embedding schemes are a promising way to extend multireference computations to large molecules with strong correlation effects localized on a small number of atoms. This work introduces a second-order active-space embedding theory [ASET(2)] which improves upon mean-field frozen embedding by treating fragment-environment interactions via an approximate canonical transformation. The canonical transformation employed in ASET(2) is formulated using the driven similarity renormalization group. The ASET(2) scheme is benchmarked on the N═N bond dissociation in pentyldiazene, the S0 to S1 excitation in 1-octene, and the interaction energy of the O2-benzene complex. The ASET(2) explicit treatment of fragment-environment interactions beyond the mean-field level generally improves the accuracy of embedded computations, and it becomes necessary to achieve an accurate description of excitation energies of 1-octene and the singlet-triplet gap of the O2-benzene complex.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Shee A, Yeh CN, Zgid D. Exploring Coupled Cluster Green's Function as a Method for Treating System and Environment in Green's Function Embedding Methods. J Chem Theory Comput 2022; 18:664-676. [PMID: 34989565 DOI: 10.1021/acs.jctc.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Within the self-energy embedding theory (SEET) framework, we study the coupled cluster Green's function (GFCC) method in two different contexts: as a method to treat either the system or the environment present in the embedding construction. Our study reveals that when GFCC is used to treat the environment we do not see improvement in total energies in comparison to the coupled cluster method itself. To rationalize this puzzling result, we analyze the performance of GFCC as an impurity solver with a series of transition metal oxides. These studies shed light on the strength and weaknesses of such a solver and demonstrate that such a solver gives very accurate results when the size of the impurity is small. We investigate if it is possible to achieve a systematic accuracy of the embedding solution when we increase the size of the impurity problem. We found that in such a case, the performance of the solver worsens, both in terms of finding the ground state solution of the impurity problem and the self-energies produced. We concluded that increasing the rank of GFCC solver is necessary to be able to enlarge impurity problems and achieve a reliable accuracy. We also have shown that natural orbitals from weakly correlated perturbative methods are better suited than symmetrized atomic orbitals (SAO) when the total energy of the system is the target quantity.
Collapse
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chia-Nan Yeh
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Hirata S. Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles. J Chem Phys 2021; 155:094106. [PMID: 34496596 DOI: 10.1063/5.0061384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comprehensive and detailed account is presented for the finite-temperature many-body perturbation theory for electrons that expands in power series all thermodynamic functions on an equal footing. Algebraic recursions in the style of the Rayleigh-Schrödinger perturbation theory are derived for the grand potential, chemical potential, internal energy, and entropy in the grand canonical ensemble and for the Helmholtz energy, internal energy, and entropy in the canonical ensemble, leading to their sum-over-states analytical formulas at any arbitrary order. For the grand canonical ensemble, these sum-over-states formulas are systematically transformed to sum-over-orbitals reduced analytical formulas by the quantum-field-theoretical techniques of normal-ordered second quantization and Feynman diagrams extended to finite temperature. It is found that the perturbation corrections to energies entering the recursions have to be treated as a nondiagonal matrix, whose off-diagonal elements are generally nonzero within a subspace spanned by degenerate Slater determinants. They give rise to a unique set of linked diagrams-renormalization diagrams-whose resolvent lines are displaced upward, which are distinct from the well-known anomalous diagrams of which one or more resolvent lines are erased. A linked-diagram theorem is introduced that proves the size-consistency of the finite-temperature many-body perturbation theory at any order. General-order algorithms implementing the recursions establish the convergence of the perturbation series toward the finite-temperature full-configuration-interaction limit unless the series diverges. The normal-ordered Hamiltonian at finite temperature sheds light on the relationship between the finite-temperature Hartree-Fock and first-order many-body perturbation theories.
Collapse
Affiliation(s)
- So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
21
|
Calvin JA, Peng C, Rishi V, Kumar A, Valeev EF. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem Rev 2020; 121:1203-1231. [DOI: 10.1021/acs.chemrev.0c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Justus A. Calvin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chong Peng
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Varun Rishi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ashutosh Kumar
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Lin HH, Maschio L, Kats D, Usvyat D, Heine T. Fragment-Based Restricted Active Space Configuration Interaction with Second-Order Corrections Embedded in Periodic Hartree–Fock Wave Function. J Chem Theory Comput 2020; 16:7100-7108. [DOI: 10.1021/acs.jctc.0c00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hung-Hsuan Lin
- Theoretische Chemie, Technische Universität Dresden, Dresden, Germany
| | - Lorenzo Maschio
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Daniel Kats
- Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
| | - Denis Usvyat
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Heine
- Theoretische Chemie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
He N, Evangelista FA. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J Chem Phys 2020; 152:094107. [PMID: 33480706 DOI: 10.1063/1.5142481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multireference computations of large-scale chemical systems are typically limited by the computational cost of quantum chemistry methods. In this work, we develop a zeroth-order active space embedding theory [ASET(0)], a simple and automatic approach for embedding any multireference dynamical correlation method based on a frozen-orbital treatment of the environment. ASET(0) is combined with the second-order multireference driven similarity renormalization group and tested on several benchmark problems, including the excitation energy of 1-octene and bond-breaking in ethane and pentyldiazene. Finally, we apply ASET(0) to study the singlet-triplet gap of p-benzyne and 9,10-anthracyne diradicals adsorbed on a NaCl surface. Our results show that despite its simplicity, ASET(0) is a powerful and sufficiently accurate embedding scheme applicable when the coupling between the fragment and the environment is in the weak to medium regime.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
24
|
Bauman NP, Peng B, Kowalski K. Coupled Cluster Green's function formulations based on the effective Hamiltonians. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1725669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nicholas P. Bauman
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bo Peng
- Advanced Computing, Mathematics, and Data Division, Battelle, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
25
|
Cui ZH, Zhu T, Chan GKL. Efficient Implementation of Ab Initio Quantum Embedding in Periodic Systems: Density Matrix Embedding Theory. J Chem Theory Comput 2019; 16:119-129. [DOI: 10.1021/acs.jctc.9b00933] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
26
|
Zhu T, Cui ZH, Chan GKL. Efficient Formulation of Ab Initio Quantum Embedding in Periodic Systems: Dynamical Mean-Field Theory. J Chem Theory Comput 2019; 16:141-153. [DOI: 10.1021/acs.jctc.9b00934] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
27
|
Veccham SP, Lee J, Head-Gordon M. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach. J Chem Phys 2019; 151:194101. [DOI: 10.1063/1.5125802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Srimukh Prasad Veccham
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Behavior of Floquet Topological Quantum States in Optically Driven Semiconductors. Symmetry (Basel) 2019. [DOI: 10.3390/sym11101246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spatially uniform optical excitations can induce Floquet topological band structures within insulators which can develop similar or equal characteristics as are known from three-dimensional topological insulators. We derive in this article theoretically the development of Floquet topological quantum states for electromagnetically driven semiconductor bulk matter and we present results for the lifetime of these states and their occupation in the non-equilibrium. The direct physical impact of the mathematical precision of the Floquet-Keldysh theory is evident when we solve the driven system of a generalized Hubbard model with our framework of dynamical mean field theory (DMFT) in the non-equilibrium for a case of ZnO. The physical consequences of the topological non-equilibrium effects in our results for correlated systems are explained with their impact on optoelectronic applications.
Collapse
|
29
|
Shee A, Zgid D. Coupled Cluster as an Impurity Solver for Green’s Function Embedding Methods. J Chem Theory Comput 2019; 15:6010-6024. [DOI: 10.1021/acs.jctc.9b00603] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Fertitta E, Booth GH. Energy-weighted density matrix embedding of open correlated chemical fragments. J Chem Phys 2019; 151:014115. [DOI: 10.1063/1.5100290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edoardo Fertitta
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
31
|
Peng B, Van Beeumen R, Williams-Young DB, Kowalski K, Yang C. Approximate Green's Function Coupled Cluster Method Employing Effective Dimension Reduction. J Chem Theory Comput 2019; 15:3185-3196. [PMID: 30951302 DOI: 10.1021/acs.jctc.9b00172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Green's function coupled cluster (GFCC) method, originally proposed in the early 1990s, is a powerful many-body tool for computing and analyzing the electronic structure of molecular and periodic systems, especially when electrons of the system are strongly correlated. However, in order for the GFCC to become a method that may be routinely used in the electronic structure calculations, robust numerical techniques and approximations must be employed to reduce its extremely high computational overhead. In our recent studies, it has been demonstrated that the GFCC equations can be solved directly in the frequency domain using iterative linear solvers, which can be easily distributed in a massively parallel environment. In the present work, we demonstrate a successful application of model-order-reduction (MOR) techniques in the GFCC framework. Briefly speaking, for a frequency regime of interest that requires high-resolution descriptions of spectral function, instead of solving the GFCC linear equation of full dimension for every single frequency point of interest, an efficiently solvable linear system model of a reduced dimension may be built upon projecting the original GFCC linear system onto a subspace. From this reduced order model is obtained a reasonable approximation to the full dimensional GFCC linear equations in both interpolative and extrapolative spectral regions. Here, we show that the subspace can be properly constructed in an iterative manner from the auxiliary vectors of the GFCC linear equations at some selected frequencies within the spectral region of interest. During the iterations, the quality of the subspace, as well as the linear system model, can be systematically improved. The method is tested in this work in terms of the efficiency and accuracy of computing spectral functions for some typical molecular systems such as carbon monoxide, 1,3-butadiene, benzene, and adenine. To reach the same level of accuracy as that of the original GFCC method, the application of MOR in the GFCC method is able to significantly lower the original computational cost for the aforementioned molecules in designated frequency regimes. As a byproduct, the reduced order model obtained by this method is found to provide a high-quality initial guess, which improves the convergence rate for the existing iterative linear solver.
Collapse
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle , Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| | - Roel Van Beeumen
- Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - David B Williams-Young
- Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle , Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| | - Chao Yang
- Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
32
|
Rusakov AA, Iskakov S, Tran LN, Zgid D. Self-Energy Embedding Theory (SEET) for Periodic Systems. J Chem Theory Comput 2018; 15:229-240. [DOI: 10.1021/acs.jctc.8b00927] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander A. Rusakov
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sergei Iskakov
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lan Nguyen Tran
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Ho Chi Minh City Institute of Physics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City 70000, Vietnam
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Quantum Physics, The Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
33
|
Peng B, Kowalski K. Green's function coupled cluster formulations utilizing extended inner excitations. J Chem Phys 2018; 149:214102. [PMID: 30525725 DOI: 10.1063/1.5046529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we analyze new approximations of the Green's function coupled cluster (GFCC) method where locations of poles are improved by extending the excitation level of inner auxiliary operators. These new GFCC approximations can be categorized as the GFCC-i(n, m) method, where the excitation level of the inner auxiliary operators (m) used to describe the ionization potential and electron affinity effects in the N - 1 and N + 1 particle spaces is higher than the excitation level (n) used to correlate the ground-state coupled cluster wave function for the N-electron system. Furthermore, we reveal the so-called "n + 1" rule in this category [or the GFCC-i(n, n + 1) method], which states that in order to maintain size-extensivity of the Green's function matrix elements, the excitation level of inner auxiliary operators X p (ω) and Y q (ω) cannot exceed n + 1. We also discuss the role of the moments of coupled cluster equations that in a natural way assures these properties. Our implementation in the present study is focused on the first approximation in this GFCC category, i.e., the GFCC-i(2,3) method. As our first practice, we use the GFCC-i(2,3) method to compute the spectral functions for the N2 and CO molecules in the inner and outer valence regimes. In comparison with the Green's function coupled cluster singles, doubles results, the computed spectral functions from the GFCC-i(2,3) method exhibit better agreement with the experimental results and other theoretical results, particularly in terms of providing higher resolution of satellite peaks and more accurate relative positions of these satellite peaks with respect to the main peak positions.
Collapse
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
34
|
Senjean B, Nakatani N, Tsuchiizu M, Fromager E. Multiple impurities and combined local density approximations in site-occupation embedding theory. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Welborn M, Manby FR, Miller TF. Even-handed subsystem selection in projection-based embedding. J Chem Phys 2018; 149:144101. [DOI: 10.1063/1.5050533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Matthew Welborn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Frederick R. Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
36
|
Abstract
Correlated electron materials display a rich variety of notable properties ranging from unconventional superconductivity to metal-insulator transitions. These properties are of interest from the point of view of applications but are hard to treat theoretically, as they result from multiple competing energy scales. Although possible in more weakly correlated materials, theoretical design and spectroscopy of strongly correlated electron materials have been a difficult challenge for many years. By treating all the relevant energy scales with sufficient accuracy, complementary advances in Green's functions and quantum Monte Carlo methods open a path to first-principles computational property predictions in this class of materials.
Collapse
Affiliation(s)
- Paul R C Kent
- Computational Sciences and Engineering Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gabriel Kotliar
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA. .,Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
37
|
Peng B, Kowalski K. Green's Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems. J Chem Theory Comput 2018; 14:4335-4352. [PMID: 29957945 DOI: 10.1021/acs.jctc.8b00313] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we present an efficient implementation for the analytical energy-dependent Green's function coupled-cluster with singles and doubles (GFCCSD) approach with our first practice being computing spectral functions of realistic molecular systems. Because of its algebraic structure, the presented method is highly scalable and is capable of computing spectral function for a given molecular system in any energy region. Several typical examples have been given to demonstrate its capability of computing spectral functions not only in the valence band but also in the core-level energy region. Satellite peaks have been observed in the inner valence band and core-level energy region where a many-body effect becomes significant and the single particle picture of ionization often breaks down. The accuracy test has been carried out by extensively comparing the computed spectral functions by our GFCCSD method with experimental photoelectron spectra as well as the theoretical ionization potentials obtained from other methods. It turns out the GFCCSD method is able to provide a qualitative or semiquantitative level of description of ionization processes in both the core and valence regimes. To significantly improve the GFCCSD results for the main ionic states, a larger basis set can usually be employed, whereas the improvement of the GFCCSD results for the satellite states needs higher-order many-body terms to be included in the GFCC implementation.
Collapse
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
38
|
Pham HQ, Bernales V, Gagliardi L. Can Density Matrix Embedding Theory with the Complete Activate Space Self-Consistent Field Solver Describe Single and Double Bond Breaking in Molecular Systems? J Chem Theory Comput 2018; 14:1960-1968. [DOI: 10.1021/acs.jctc.7b01248] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hung Q. Pham
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Varinia Bernales
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
39
|
Reinholdt P, Kongsted J, Olsen JMH. Polarizable Density Embedding: A Solution to the Electron Spill-Out Problem in Multiscale Modeling. J Phys Chem Lett 2017; 8:5949-5958. [PMID: 29178794 DOI: 10.1021/acs.jpclett.7b02788] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large and diffuse basis sets that are otherwise questionable-due to electron spill-out effects-in standard embedding models. Based on our analysis, we find the PDE model to be robust and much more systematic than less sophisticated focused embedding models, and thus outline the PDE model as a very efficient and accurate approach to describe the electronic structure of ground and excited states as well as molecular properties of complex, heterogeneous systems.
Collapse
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Jógvan Magnus Haugaard Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
40
|
Baranov AI, Martín Pendás Á. Electron sharing and localization in real space for the Mott transition from 1RDMFT periodic calculations. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
42
|
Abstract
Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. We generalize a Green's function QM/QM embedding method called self-energy embedding theory (SEET) that has the potential to be successfully employed to treat large active spaces. In generalized SEET, active orbitals are grouped into intersecting groups of a few orbitals, allowing us to perform multiple parallel calculations yielding results comparable to the full active-space treatment. We examine generalized SEET on a series of examples and discuss a hierarchy of systematically improvable approximations.
Collapse
Affiliation(s)
- Tran Nguyen Lan
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Abstract
In complex systems, it is often the case that the region of interest forms only one part of a much larger system. The idea of joining two different quantum simulations-a high level calculation on the active region of interest, and a low level calculation on its environment-formally defines a quantum embedding. While any combination of techniques constitutes an embedding, several rigorous formalisms have emerged that provide for exact feedback between the embedded system and its environment. These three formulations: density functional embedding, Green's function embedding, and density matrix embedding, respectively, use the single-particle density, single-particle Green's function, and single-particle density matrix as the quantum variables of interest. Many excellent reviews exist covering these methods individually. However, a unified presentation of the different formalisms is so far lacking. Indeed, the various languages commonly used, functional equations for density functional embedding, diagrammatics for Green's function embedding, and entanglement arguments for density matrix embedding, make the three formulations appear vastly different. In this Account, we introduce the basic equations of all three formulations in such a way as to highlight their many common intellectual strands. While we focus primarily on a straightforward theoretical perspective, we also give a brief overview of recent applications and possible future developments. The first section starts with density functional embedding, where we introduce the key embedding potential via the Euler equation. We then discuss recent work concerning the treatment of the nonadditive kinetic potential, before describing mean-field density functional embedding and wave function in density functional embedding. We finish the section with extensions to time-dependence and excited states. The second section is devoted to Green's function embedding. Here, we use the Dyson equation to obtain equations that parallel as closely as possible the density functional embedding equations, with the hybridization playing the role of the embedding potential. Embedding a high-level self-energy within a low-level self-energy is treated analogously to wave function in density functional embedding. The numerical computation of the high-level self-energy allows us to briefly introduce the bath representation in the quantum impurity problem. We then consider translationally invariant systems to bring in the important dynamical mean-field theory. Recent developments to incorporate screening and long-range interactions are discussed. The third section concerns density matrix embedding. Here, we first highlight some mathematical complications associated with a simple Euler equation derivation, arising from the open nature of fragments. This motivates the density matrix embedding theory, where we use the Schmidt decomposition to represent the entanglement through bath orbitals. The resulting impurity plus bath formulation resembles that of dynamical mean-field theory. We discuss the numerical self-consistency associated with using a high-level correlated wave function with a mean-field low-level treatment, and connect the resulting numerical inversion to that used in density functional embedding. We finish with perspectives on the future of all three methods.
Collapse
Affiliation(s)
- Qiming Sun
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
44
|
Werner P, Casula M. Dynamical screening in correlated electron systems-from lattice models to realistic materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:383001. [PMID: 27440180 DOI: 10.1088/0953-8984/28/38/383001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent progress in treating the dynamical nature of the screened Coulomb interaction in strongly correlated lattice models and materials is reviewed with a focus on computational schemes based on the dynamical mean field approximation. We discuss approximate and exact methods for the solution of impurity models with retarded interactions, and explain how these models appear as auxiliary problems in various extensions of the dynamical mean field formalism. The current state of the field is illustrated with results from recent applications of these schemes to U-V Hubbard models and correlated materials.
Collapse
Affiliation(s)
- Philipp Werner
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | | |
Collapse
|
45
|
Nguyen Lan T, Kananenka AA, Zgid D. Rigorous Ab Initio Quantum Embedding for Quantum Chemistry Using Green’s Function Theory: Screened Interaction, Nonlocal Self-Energy Relaxation, Orbital Basis, and Chemical Accuracy. J Chem Theory Comput 2016; 12:4856-4870. [DOI: 10.1021/acs.jctc.6b00638] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tran Nguyen Lan
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexei A. Kananenka
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dominika Zgid
- Department of Chemistry and ‡Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Bennie SJ, van der Kamp MW, Pennifold RCR, Stella M, Manby FR, Mulholland AJ. A Projector-Embedding Approach for Multiscale Coupled-Cluster Calculations Applied to Citrate Synthase. J Chem Theory Comput 2016; 12:2689-97. [PMID: 27159381 DOI: 10.1021/acs.jctc.6b00285] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Projector-based embedding has recently emerged as a robust multiscale method for the calculation of various electronic molecular properties. We present the coupling of projector embedding with quantum mechanics/molecular mechanics modeling and apply it for the first time to an enzyme-catalyzed reaction. Using projector-based embedding, we combine coupled-cluster theory, density-functional theory (DFT), and molecular mechanics to compute energies for the proton abstraction from acetyl-coenzyme A by citrate synthase. By embedding correlated ab initio methods in DFT we eliminate functional sensitivity and obtain high-accuracy profiles in a procedure that is straightforward to apply.
Collapse
Affiliation(s)
- Simon J Bennie
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Marc W van der Kamp
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol , Bristol BS8 1TD, U.K
| | - Robert C R Pennifold
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Martina Stella
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Frederick R Manby
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | - Adrian J Mulholland
- Center for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| |
Collapse
|
47
|
Wouters S, Jiménez-Hoyos CA, Sun Q, Chan GKL. A Practical Guide to Density Matrix Embedding Theory in Quantum Chemistry. J Chem Theory Comput 2016; 12:2706-19. [DOI: 10.1021/acs.jctc.6b00316] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Wouters
- Department of Chemistry, Frick Chemistry
Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Carlos A. Jiménez-Hoyos
- Department of Chemistry, Frick Chemistry
Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Qiming Sun
- Department of Chemistry, Frick Chemistry
Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Garnet K.-L. Chan
- Department of Chemistry, Frick Chemistry
Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
48
|
Senjean B, Tsuchiizu M, Robert V, Fromager E. Local density approximation in site-occupation embedding theory. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1182224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bruno Senjean
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | | | - Vincent Robert
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| |
Collapse
|
49
|
Lan TN, Kananenka AA, Zgid D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J Chem Phys 2015; 143:241102. [DOI: 10.1063/1.4938562] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Yao YX, Liu J, Liu C, Lu WC, Wang CZ, Ho KM. Efficient and accurate treatment of electron correlations with Correlation Matrix Renormalization theory. Sci Rep 2015; 5:13478. [PMID: 26315767 PMCID: PMC4551991 DOI: 10.1038/srep13478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We also show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.
Collapse
Affiliation(s)
- Y. X. Yao
- Ames Laboratory–US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - J. Liu
- Ames Laboratory–US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - C. Liu
- Ames Laboratory–US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - W. C. Lu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021, China
- College of Physical Science and Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071, China
| | - C. Z. Wang
- Ames Laboratory–US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - K. M. Ho
- Ames Laboratory–US DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|