1
|
van Rooijen WA, Habibi P, Xu K, Dey P, Vlugt TJH, Hajibeygi H, Moultos OA. Interfacial Tensions, Solubilities, and Transport Properties of the H 2/H 2O/NaCl System: A Molecular Simulation Study. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:307-319. [PMID: 38352074 PMCID: PMC10859954 DOI: 10.1021/acs.jced.2c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 02/16/2024]
Abstract
Data for several key thermodynamic and transport properties needed for technologies using hydrogen (H2), such as underground H2 storage and H2O electrolysis are scarce or completely missing. Force field-based Molecular Dynamics (MD) and Continuous Fractional Component Monte Carlo (CFCMC) simulations are carried out in this work to cover this gap. Extensive new data sets are provided for (a) interfacial tensions of H2 gas in contact with aqueous NaCl solutions for temperatures of (298 to 523) K, pressures of (1 to 600) bar, and molalities of (0 to 6) mol NaCl/kg H2O, (b) self-diffusivities of infinitely diluted H2 in aqueous NaCl solutions for temperatures of (298 to 723) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O, and (c) solubilities of H2 in aqueous NaCl solutions for temperatures of (298 to 363) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O. The force fields used are the TIP4P/2005 for H2O, the Madrid-2019 and the Madrid-Transport for NaCl, and the Vrabec and Marx for H2. Excellent agreement between the simulation results and available experimental data is found with average deviations lower than 10%.
Collapse
Affiliation(s)
- W. A. van Rooijen
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - P. Habibi
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - K. Xu
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - P. Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical, Maritime
and Materials Engineering, Delft University
of Technology, Mekelweg
2, 2628CD, Delft, The Netherlands
| | - T. J. H. Vlugt
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
| | - H. Hajibeygi
- Reservoir
Engineering, Geoscience and Engineering Department, Faculty of Civil
Engineering and Geosciences, Delft University
of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - O. A. Moultos
- Engineering
Thermodynamics, Process and Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB, Delft, The Netherlands
| |
Collapse
|
2
|
Meng X, Zhu C, Wang X, Liu Z, Zhu M, Yin K, Long R, Gu L, Shao X, Sun L, Sun Y, Dai Y, Xiong Y. Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion. Nat Commun 2023; 14:2643. [PMID: 37156784 PMCID: PMC10167308 DOI: 10.1038/s41467-023-38138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Photoelectrochemical device is a versatile platform for achieving various chemical transformations with solar energy. However, a grand challenge, originating from mass and electron transfer of triphase-reagents/products in gas phase, water/electrolyte/products in liquid phase and catalyst/photoelectrode in solid phase, largely limits its practical application. Here, we report the simulation-guided development of hierarchical triphase diffusion photoelectrodes, to improve mass transfer and ensure electron transfer for photoelectrochemical gas/liquid flow conversion. Semiconductor nanocrystals are controllably integrated within electrospun nanofiber-derived mat, overcoming inherent brittleness of semiconductors. The mechanically strong skeleton of free-standing mat, together with satisfactory photon absorption, electrical conductivity and hierarchical pores, enables the design of triphase diffusion photoelectrodes. Such a design allows photoelectrochemical gas/liquid conversion to be performed continuously in a flow cell. As a proof of concept, 16.6- and 4.0-fold enhancements are achieved for the production rate and product selectivity of methane conversion, respectively, with remarkable durability.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Chuntong Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xin Wang
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Zehua Liu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengmeng Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Kuibo Yin
- School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Ran Long
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liuning Gu
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xinxing Shao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Litao Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China.
| | - Yujie Xiong
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China.
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Pan Z, Liu W, Yu L, Xie Z, Sun Q, Zhao P, Chen D, Fang W, Liu B. Resonance-Induced Reduction of Interfacial Tension of Water-Methane and Improvement of Methane Solubility in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13594-13601. [PMID: 36299165 DOI: 10.1021/acs.langmuir.2c02392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Molecular dynamics simulations were performed to study the effect of the periodic oscillating electric field on the interface between water and methane. We propose a new strategy that utilizes oscillating electric fields to reduce the interfacial tension (IFT) between water and methane and increase the solubility of methane in water simultaneously. These are attributed to the hydrogen bond resonance induced by an electric field with a frequency close to the natural frequency of the hydrogen bond. The resonance breaks the hydrogen bond network among water molecules to the maximum, which destroys the hydration shell and reduces the cohesive action of water, thus resulting in the decrease of IFT and the increase of methane solubility. As the frequency of the electric field is close to the optimum resonant frequency of hydrogen bonds, IFT decreases from 56.43 to 5.66 mN/m; water and methane are miscible because the solubility parameter of water reduces from 47.63 to 2.85 MPa1/2, which is close to that of methane (3.43 MPa1/2). Our results provide a new idea for reducing the water-gas IFT and improving the solubility of insoluble gas in water and theoretical guidance in the fields of natural gas exploitation, hydrate generation, and nanobubble nucleation.
Collapse
Affiliation(s)
- Zhiming Pan
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Wenyu Liu
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Leyang Yu
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Zhiyang Xie
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Qing Sun
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Peihe Zhao
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Dongmeng Chen
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Wenjing Fang
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| | - Bing Liu
- College of Science, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
4
|
Wang Y, Allen O, Collins E, Ashbaugh HS. Methane at the gas/water interface: Molecular simulations of surface adsorption and second surface virial coefficients. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Narayanan Nair AK, Anwari Che Ruslan MF, Ramirez Hincapie ML, Sun S. Bulk and Interfacial Properties of Brine or Alkane in the Presence of Carbon Dioxide, Methane, and Their Mixture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marcia Luna Ramirez Hincapie
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Tsimpanogiannis IN. A novel hybrid method for the calculation of methane hydrate-water interfacial tension along the three-phase (hydrate-liquid water-vapor) equilibrium line. J Chem Phys 2021; 155:024702. [PMID: 34266278 DOI: 10.1063/5.0051383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We use a novel hybrid method to explore the temperature dependence of the solid-liquid interfacial tension of a system that consists of solid methane hydrate and liquid water. The calculated values along the three-phase (hydrate-liquid water-vapor) equilibrium line are obtained through the combination of available experimental measurements and computational results that are based on approaches at the atomistic scale, including molecular dynamics and Monte Carlo. An extensive comparison with available experimental and computational studies is performed, and a critical assessment and re-evaluation of previously reported data is presented.
Collapse
Affiliation(s)
- Ioannis N Tsimpanogiannis
- Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), 57001 Thermi-Thessaloniki, Greece
| |
Collapse
|
7
|
Guo Q, Hu W, Zhang Y, Zhang K, Dong B, Qin Y, Li W. Molecular dynamics simulation of the interfacial properties of methane-water and methane-brine systems. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1929969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qiuyi Guo
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
| | - Wenfeng Hu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
| | - Yue Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
| | - Kun Zhang
- School of Ocean and Civil Engineering, Dalian Ocean University, Dalian, People’s Republic of China
| | - Bo Dong
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China
| | - Yan Qin
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China
| | - Weizhong Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, People’s Republic of China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
8
|
Liu X, Mutailipu M, Zhao J, Liu Y. Comparative Analysis of Four Neural Network Models on the Estimation of CO 2-Brine Interfacial Tension. ACS OMEGA 2021; 6:4282-4288. [PMID: 33644549 PMCID: PMC7906582 DOI: 10.1021/acsomega.0c05290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
During the CO2 injection of geological carbon sequestration and CO2-enhanced oil recovery, the contact of CO2 with underground salt water is inevitable, where the interfacial tension (IFT) between gas and liquid determines whether the projects can proceed smoothly. In this paper, three traditional neural network models, the wavelet neural network (WNN) model, the back propagation (BP) model, and the radical basis function model, were applied to predict the IFT between CO2 and brine with temperature, pressure, monovalent cation molality, divalent cation molality, and molar fraction of methane and nitrogen impurities. A total of 974 sets of experimental data were divided into two data groups, the training group and the testing group. By optimizing the WNN model (I_WNN), a most stable and precise model is established, and it is found that temperature and pressure are the main parameters affecting the IFT. Through the comparison of models, it is found that I_WNN and BP models are more suitable for the IFT evaluation between CO2 and brine.
Collapse
|
9
|
Riera M, Hirales A, Ghosh R, Paesani F. Data-Driven Many-Body Models with Chemical Accuracy for CH4/H2O Mixtures. J Phys Chem B 2020; 124:11207-11221. [DOI: 10.1021/acs.jpcb.0c08728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Alan Hirales
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Raja Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Ansari N, Karmakar T, Parrinello M. Molecular Mechanism of Gas Solubility in Liquid: Constant Chemical Potential Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:5279-5286. [PMID: 32551636 DOI: 10.1021/acs.jctc.0c00450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate prediction of gas solubility in a liquid is crucial in many areas of chemistry, and a detailed understanding of the molecular mechanism of the gas solvation continues to be an active area of research. Here, we extend the idea of the constant chemical potential molecular dynamics (CμMD) approach to the calculation of the gas solubility in the liquid under constant gas chemical potential conditions. As a representative example, we utilize this method to calculate the isothermal solubility of carbon dioxide in water. Additionally, we provide microscopic insight into the mechanism of solvation that preferentially occurs in areas of the surface where the hydrogen network is broken.
Collapse
Affiliation(s)
- Narjes Ansari
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.,Facoltà di informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Tarak Karmakar
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.,Facoltà di informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.,Facoltà di informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland.,Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
11
|
Naeiji P, Woo TK, Alavi S, Ohmura R. Molecular dynamics simulations of interfacial properties of the CO 2-water and CO 2-CH 4-water systems. J Chem Phys 2020; 153:044701. [PMID: 32752701 DOI: 10.1063/5.0008114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular dynamics simulations were performed to study the interfacial behavior of the pure carbon dioxide-water system and a binary 40:60 mol. % gas mixture of (carbon dioxide + methane)-water at the temperatures of 275.15 K and 298.15 K and pressures near 4 MPa for CO2 and up to 10 MPa for methane. The simulations are used to study the dynamic equilibrium of the gases at the water-gas interface, to determine the z-density profiles for the gases and water, and calculate the interfacial tension γ under the different temperature/pressure conditions close to those of the formation of clathrate hydrates of these gases. At the same hydrostatic gas phase pressure, the CO2-water interface has a lower interfacial tension than the CH4-water interface. A greater number of CO2 molecules, as much as three times more than methane at the same pressure, were adsorbed at the interfacial layer, which reflects the stronger electrostatic quadrupolar and van der Waals interactions between CO2 and water molecules at the interface. The water surfaces are covered by less than a monolayer of gas even when the pressure of the system goes near the saturation pressure of CO2. The surface adsorbed molecules are in dynamic equilibrium with the bulk gas and with exchange between the gas and interface regions occurring repeatedly within the timescale of the simulations. The effects of the changes in the CO2-water interfacial tension with external temperature and pressure conditions on the formation of the clathrate hydrates and other CO2 capture and sequestration processes are discussed.
Collapse
Affiliation(s)
- Parisa Naeiji
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Saman Alavi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Ryo Ohmura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| |
Collapse
|
12
|
Pruteanu CG, Naden Robinson V, Ansari N, Hassanali A, Scandolo S, Loveday JS. Squeezing Oil into Water under Pressure: Inverting the Hydrophobic Effect. J Phys Chem Lett 2020; 11:4826-4833. [PMID: 32496780 PMCID: PMC7467747 DOI: 10.1021/acs.jpclett.0c01410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The molecular structure of dense homogeneous fluid water-methane mixtures has been determined for the first time using high-pressure neutron-scattering techniques at 1.7 and 2.2 GPa. A mixed state with a fully H-bonded water network is revealed. The hydration shell of the methane molecules is, however, revealed to be pressure-dependent with an increase in the water coordination between 1.7 and 2.2 GPa. In parallel, ab initio molecular dynamics simulations have been performed to provide insight into the microscopic mechanisms associated with the phenomenon of mixing. These calculations reproduce the observed phase change from phase separation to mixing with increasing pressure. The calculations also reproduce the experimentally observed structural properties. Unexpectedly, the simulations show mixing is accompanied by a subtle enhancement of the polarization of methane. Our results highlight the key role played by fine electronic effects on miscibility and the need to readjust our fundamental understanding of hydrophobicity to account for these.
Collapse
Affiliation(s)
- Ciprian G. Pruteanu
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Victor Naden Robinson
- The
“Abdus Salam” International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Narjes Ansari
- The
“Abdus Salam” International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Ali Hassanali
- The
“Abdus Salam” International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Sandro Scandolo
- The
“Abdus Salam” International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - John S. Loveday
- SUPA,
School of Physics and Astronomy and Centre for Science at Extreme
Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
13
|
Adsorption and distribution of gas molecules at the (CH4 + CO2)-water interface: insights from analysis of intrinsic interfacial structure. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Mirzaeifard S, Servio P, Rey AD. Molecular dynamics characterization of the water-methane, ethane, and propane gas mixture interfaces. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Pruteanu CG, Marenduzzo D, Loveday JS. Pressure-Induced Miscibility Increase of CH4 in H2O: A Computational Study Using Classical Potentials. J Phys Chem B 2019; 123:8091-8095. [DOI: 10.1021/acs.jpcb.9b06086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ciprian G. Pruteanu
- SUPA, School of Physics and Astronomy and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, U.K
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, U.K
| | - John S. Loveday
- SUPA, School of Physics and Astronomy and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3JZ, U.K
| |
Collapse
|
16
|
Naeiji P, Woo TK, Alavi S, Varaminian F, Ohmura R. Interfacial properties of hydrocarbon/water systems predicted by molecular dynamic simulations. J Chem Phys 2019; 150:114703. [DOI: 10.1063/1.5078739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Parisa Naeiji
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
- School of Chemical, Petroleum, and Gas Engineering, Semnan University, Semnan, Iran
| | - Tom K. Woo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Saman Alavi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Farshad Varaminian
- School of Chemical, Petroleum, and Gas Engineering, Semnan University, Semnan, Iran
| | - Ryo Ohmura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| |
Collapse
|
17
|
Sujith K, Ramachandran C. Effect of surface roughness on adsorption and distribution of methane at the water-methane interface. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Yuhara D, Brumby PE, Wu DT, Sum AK, Yasuoka K. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations. J Chem Phys 2018; 148:184501. [DOI: 10.1063/1.5016609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Daisuke Yuhara
- Department of Mechanical Engineering, Keio University, 3-4-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Paul E. Brumby
- Department of Mechanical Engineering, Keio University, 3-4-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - David T. Wu
- Chemistry Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Amadeu K. Sum
- Hydrates Energy Innovation Lab, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-4-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
19
|
Pinho B, Liu Y, Rizkin B, Hartman RL. Confined methane-water interfacial layers and thickness measurements using in situ Raman spectroscopy. LAB ON A CHIP 2017; 17:3883-3890. [PMID: 29051944 DOI: 10.1039/c7lc00660h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gas-liquid interfaces broadly impact our planet, yet confined interfaces behave differently than unconfined ones. We report the role of tangential fluid motion in confined methane-water interfaces. The interfaces are created using microfluidics and investigated by in situ 1D, 2D and 3D Raman spectroscopy. The apparent CH4 and H2O concentrations are reported for Reynolds numbers (Re), ranging from 0.17 to 8.55. Remarkably, the interfaces are comprised of distinct layers of thicknesses varying from 23 to 57 μm. We found that rarefaction, mixture, thin film, and shockwave layers together form the interfaces. The results indicate that the mixture layer thickness (δ) increases with Re (δ ∝ Re), and traditional transport theory for unconfined interfaces does not explain the confined interfaces. A comparison of our results with thin film theory of air-water interfaces (from mass transfer experiments in capillary microfluidics) supports that the hydrophobicity of CH4 could decrease the strength of water-water interactions, resulting in larger interfacial thicknesses. Our findings help explain molecular transport in confined gas-liquid interfaces, which are common in a broad range of societal applications.
Collapse
Affiliation(s)
- Bruno Pinho
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | | | | | | |
Collapse
|
20
|
Yang Y, Narayanan Nair AK, Sun S. Molecular Dynamics Simulation Study of Carbon Dioxide, Methane, and Their Mixture in the Presence of Brine. J Phys Chem B 2017; 121:9688-9698. [DOI: 10.1021/acs.jpcb.7b08118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division
(PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division
(PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division
(PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Phan A, Cole DR, Striolo A. Factors governing the behaviour of aqueous methane in narrow pores. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0019. [PMID: 26712646 DOI: 10.1098/rsta.2015.0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
All-atom equilibrium molecular dynamics simulations were employed to investigate the behaviour of aqueous methane confined in 1-nm-wide pores obtained from different materials. Models for silica, alumina and magnesium oxide were used to construct the slit-shaped pores. The results show that methane solubility in confined water strongly depends on the confining material, with silica yielding the highest solubility in the systems considered here. The molecular structure of confined water differs within the three pores, and density fluctuations reveal that the silica pore is effectively less 'hydrophilic' than the other two pores considered. Comparing the water fluctuation autocorrelation function with local diffusion coefficients of methane across the hydrated pores we observed a direct proportional coupling between methane and water dynamics. These simulation results help to understand the behaviour of gas in water confined within narrow subsurface formations, with possible implications for fluid transport.
Collapse
Affiliation(s)
- Anh Phan
- Department of Chemical Engineering, University College London, Torrington Place, London WC1 E7JE, UK
| | - David R Cole
- School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Alberto Striolo
- Department of Chemical Engineering, University College London, Torrington Place, London WC1 E7JE, UK
| |
Collapse
|
22
|
Abe K, Sumi T, Koga K. Mean-Field Approximation to the Hydrophobic Hydration in the Liquid–Vapor Interface of Water. J Phys Chem B 2015; 120:2012-9. [DOI: 10.1021/acs.jpcb.5b10169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kiharu Abe
- Department
of Chemistry,
Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Tomonari Sumi
- Department
of Chemistry,
Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Kenichiro Koga
- Department
of Chemistry,
Faculty of Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Gillan MJ, Alfè D, Manby FR. Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order Møller-Plesset calculations. J Chem Phys 2015; 143:102812. [PMID: 26374005 DOI: 10.1063/1.4926444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quantum Monte Carlo (QMC) technique is used to generate accurate energy benchmarks for methane-water clusters containing a single methane monomer and up to 20 water monomers. The benchmarks for each type of cluster are computed for a set of geometries drawn from molecular dynamics simulations. The accuracy of QMC is expected to be comparable with that of coupled-cluster calculations, and this is confirmed by comparisons for the CH4-H2O dimer. The benchmarks are used to assess the accuracy of the second-order Møller-Plesset (MP2) approximation close to the complete basis-set limit. A recently developed embedded many-body technique is shown to give an efficient procedure for computing basis-set converged MP2 energies for the large clusters. It is found that MP2 values for the methane binding energies and the cohesive energies of the water clusters without methane are in close agreement with the QMC benchmarks, but the agreement is aided by partial cancelation between 2-body and beyond-2-body errors of MP2. The embedding approach allows MP2 to be applied without loss of accuracy to the methane hydrate crystal, and it is shown that the resulting methane binding energy and the cohesive energy of the water lattice agree almost exactly with recently reported QMC values.
Collapse
Affiliation(s)
- M J Gillan
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - D Alfè
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - F R Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
24
|
Ning FL, Glavatskiy K, Ji Z, Kjelstrup S, H. Vlugt TJ. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:2869-83. [DOI: 10.1039/c4cp04212c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the thermal and mechanical properties of CH4 and CO2 hydrates is essential for the replacement of CH4 with CO2 in natural hydrate deposits as well as for CO2 sequestration and storage.
Collapse
Affiliation(s)
- F. L. Ning
- Faculty of Engineering
- China University of Geosciences
- Wuhan
- China
| | - K. Glavatskiy
- School of Applied Sciences
- RMIT University
- Melbourne VIC 3001
- Australia
| | - Z. Ji
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - S. Kjelstrup
- Department of Chemistry
- Norwegian University of Science and Technology
- 7491-Trondheim
- Norway
- Process & Energy Laboratory
| | - T. J. H. Vlugt
- Process & Energy Laboratory
- Delft University of Technology
- Delft
- The Netherlands
| |
Collapse
|
25
|
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.07.047] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
English NJ, Lauricella M, Meloni S. Massively parallel molecular dynamics simulation of formation of clathrate-hydrate precursors at planar water-methane interfaces: Insights into heterogeneous nucleation. J Chem Phys 2014; 140:204714. [DOI: 10.1063/1.4879777] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Barnes BC, Beckham GT, Wu DT, Sum AK. Two-component order parameter for quantifying clathrate hydrate nucleation and growth. J Chem Phys 2014; 140:164506. [PMID: 24784286 DOI: 10.1063/1.4871898] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Methane clathrate hydrate nucleation and growth is investigated via analysis of molecular dynamics simulations using a new order parameter. This order parameter (OP), named the Mutually Coordinated Guest (MCG) OP, quantifies the appearance and connectivity of molecular clusters composed of guests separated by water clusters. It is the first two-component OP used for quantifying hydrate nucleation and growth. The algorithm for calculating the MCG OP is described in detail. Its physical motivation and advantages compared to existing methods are discussed.
Collapse
Affiliation(s)
- Brian C Barnes
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Gregg T Beckham
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - David T Wu
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Amadeu K Sum
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
28
|
Kong CP, Peters EAJF, Zheng QC, de With G, Zhang HX. The molecular configuration of a DOPA/ST monolayer at the air–water interface: a molecular dynamics study. Phys Chem Chem Phys 2014; 16:9634-42. [DOI: 10.1039/c4cp00555d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Musolino N, Trout BL. Insight into the molecular mechanism of water evaporation via the finite temperature string method. J Chem Phys 2013; 138:134707. [PMID: 23574252 DOI: 10.1063/1.4798458] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.
Collapse
Affiliation(s)
- Nicholas Musolino
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. E19-502, Cambridge, Massachusetts 02144, USA
| | | |
Collapse
|
30
|
|