1
|
Maj M. Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy. J Chem Phys 2025; 162:014113. [PMID: 39760293 DOI: 10.1063/5.0242857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped. Here, we present the development and validation of a solvatochromic charge model for isonitrile (N≡C) probes. Using density functional theory calculations, we parameterized solvatochromic charges for isonitrile and integrated them into classical molecular dynamics (MD) simulations of β-isocyanoalanine in various solvents, including water and fluorinated alcohols. The model incorporates solvent-induced frequency shifts and accurately reproduces complex experimental line shapes, including asymmetric features from non-Gaussian dynamics. The model successfully reproduced the bimodal distribution of frequency shifts corresponding to free and H-bonded species in alcohols, as well as cross-peaks due to chemical exchange. Achieving reproducibility required long MD trajectories, which were computationally demanding. To manage this, we implemented graphics processing unit acceleration, drastically reducing the computational time and enabling the efficient processing of extensive MD data. While some discrepancies in population ratios suggest the need for refined solvent force field parameters and modeling transition dipole moment variations, the developed solvatochromic model is a reliable tool for studying the solvation dynamics. The model enables more detailed investigations of ultrafast dynamics in solute-solvent complexes and represents important steps toward modeling site-specific dynamics of biomolecules with isonitrile probes.
Collapse
Affiliation(s)
- Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
2
|
Cruz R, Ataka K, Heberle J, Kozuch J. Evaluating aliphatic CF, CF2, and CF3 groups as vibrational Stark effect reporters. J Chem Phys 2024; 160:204308. [PMID: 38814010 DOI: 10.1063/5.0198303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Given the extensive use of fluorination in molecular design, it is imperative to understand the solvation properties of fluorinated compounds and the impact of the C-F bond on electrostatic interactions. Vibrational spectroscopy can provide direct insights into these interactions by using the C-F bond stretching [v(C-F)] as an electric field probe through the vibrational Stark effect (VSE). In this work, we explore the VSE of the three basic patterns of aliphatic fluorination, i.e., mono-, di-, and trifluorination in CF, CF2, and CF3 groups, respectively, and compare their response to the well-studied aromatic v(C-F). Magnitudes (i.e., Stark tuning rates) and orientations of the difference dipole vectors of the v(C-F)-containing normal modes were determined using density functional theory and a molecular dynamics (MD)-assisted solvatochromic analysis of model compounds in solvents of varying polarity. We obtain Stark tuning rates of 0.2-0.8 cm-1/(MV/cm), with smallest and largest electric field sensitivities for CFaliphatic and CF3,aliphatic, respectively. While average electric fields of solvation were oriented along the main symmetry axis of the CFn, and thus along its static dipole, the Stark tuning rate vectors were tilted by up to 87° potentially enabling to map electrostatics in multiple dimensions. We discuss the influence of conformational heterogeneity on spectral shifts and point out the importance of multipolar and/or polarizable MD force fields to describe the electrostatics of fluorinated molecules. The implications of this work are of direct relevance for studies of fluorinated molecules as found in pharmaceuticals, fluorinated peptides, and proteins.
Collapse
Affiliation(s)
- R Cruz
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
| | - K Ataka
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
| | - J Heberle
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Berlin 14195, Germany
| | - J Kozuch
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
3
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Bodine M, Rozyyev V, Elam JW, Tokmakoff A, Lewis NHC. Vibrational Probe at the Electrochemical Interface: Dependence on Plasmon Coupling and Potential of the Lineshape in Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2023:11092-11099. [PMID: 38051916 DOI: 10.1021/acs.jpclett.3c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Two-dimensional infrared spectroscopy of vibrational probes at an electrode surface shows promise for studying the structural dynamics at an active electrochemical interface. This interface is a complex environment where the solution structures in response to the applied potential. A strategy for achieving the necessary monolayer sensitivity is to use a plasmonically active electrode, which enhances the electromagnetic fields that produce the spectroscopic response. Here, we show how the coupling between the plasmon and the vibrations of the molecular monolayer impacts the FTIR and 2D IR spectroscopy, with an emphasis on the electrochemical potential difference spectra. We show how mixing between the vibrational and plasmonic states gives rise to the distortions that are observed in these measurements. This provides an important step toward 2D IR measurements of vibrational probes at the electrochemical interface as a tool for probing the structural dynamics in the double layer.
Collapse
Affiliation(s)
- Melissa Bodine
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vepa Rozyyev
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Perera SM, Aikawa T, Shaner SE, Moran SD, Wang L. Effects of the Intramolecular Group and Solvent on Vibrational Coupling Modes and Strengths of Fermi Resonances in Aryl Azides: A DFT Study of 4-Azidotoluene and 4-Azido- N-phenylmaleimide. J Phys Chem A 2023; 127:8911-8921. [PMID: 37819373 DOI: 10.1021/acs.jpca.3c06312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The high transition dipole strength of the azide asymmetric stretch makes aryl azides good candidates as vibrational probes (VPs). However, aryl azides have complex absorption profiles due to Fermi resonances (FRs). Understanding the origin and the vibrational modes involved in FRs of aryl azides is critically important toward developing them as VPs for studies of protein structures and structural changes in response to their surroundings. As such, we studied vibrational couplings in 4-azidotoluene and 4-azido-N-phenylmaleimide in two solvents, N,N-dimethylacetamide and tetrahydrofuran, to explore the origin and the effects of intramolecular group and solvent on the FRs of aryl azides using density functional theory (DFT) calculations with the B3LYP functional and seven basis sets, 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), and 6-311++G(df,pd). Two combination bands consisting of the azide symmetric stretch and another mode form strong FRs with the azide asymmetric stretch for both molecules. The FR profile was altered by replacing the methyl group with maleimide. Solvents change the relative peak position and intensity more significantly for 4-azido-N-phenylmaleimide, which makes it a more sensitive VP. Furthermore, the DFT results indicate that a comparison among the results from different basis sets can be used as a means to predict more reliable vibrational spectra.
Collapse
Affiliation(s)
- Sathya M Perera
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Tenyu Aikawa
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sarah E Shaner
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, Missouri 63701, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Lichang Wang
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
6
|
Shi L, Min W. Vibrational Solvatochromism Study of the C-H···O Improper Hydrogen Bond. J Phys Chem B 2023; 127:3798-3805. [PMID: 37122158 DOI: 10.1021/acs.jpcb.2c08119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The improper C-H···O hydrogen bond is an important weak interaction, with broad implications for protein and nucleic acid structure, molecular recognition, enzyme catalysis, and drug interaction. Despite its wide identification in crystal structures, the general existence of C-H···O hydrogen bonds remains elusive especially for natural C-H groups in bulk aqueous solutions at room temperature. Vibrational spectroscopy is a promising methodology to tackle this challenge, as formation of C-H···O hydrogen bonds usually causes shifts of the C-H stretch frequency. Yet, prior observations are inconclusive, as they are all based on a simple blue-shift in aqueous solution and cannot distinguish if it is an effect caused by solvent reorganization or a specific hydrogen-bonding interaction. In this work, we used vibrational solvatochromism as a calibration of the solvent reorganization effect and identified a specific H-bonding interaction. We performed vibrational solvatochromism study of C-H(D) of multiple alcohol molecules including the CH mode of CD3CH(OH)CD3 and the CD3 modes of CD3OH, CD3CH2OH, and CD3CH(OH)CD3 in a series of solvents. We found an abnormal blue-shift of the Raman frequency of the C-H and C-D bonds at both the Cα and Cβ positions of alcohols in water, which lies in an opposite direction to the expected trend due to vibrational solvatochromism. This experimental evidence supports that the improper C-H···O hydrogen bonds might generally exist between nonpolarized C-H and water in liquid solutions at room temperature.
Collapse
Affiliation(s)
- Lixue Shi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Strunge K, Madzharova F, Jensen F, Weidner T, Nagata Y. Theoretical Sum Frequency Generation Spectra of Protein Amide with Surface-Specific Velocity-Velocity Correlation Functions. J Phys Chem B 2022; 126:8571-8578. [PMID: 36194760 DOI: 10.1021/acs.jpcb.2c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vibrational sum frequency generation (vSFG) spectroscopy is widely used to probe the protein structure at interfaces. Because protein vSFG spectra are complex, they can only provide detailed structural information if combined with computer simulations of protein molecular dynamics and spectra calculations. We show how vSFG spectra can be accurately modeled using a surface-specific velocity-velocity scheme based on ab initio normal modes. Our calculated vSFG spectra show excellent agreement with the experimental sum frequency spectrum of LTα14 peptide and provide insight into the origin of the characteristic α-helical amide I peak. Analysis indicates that the peak shape can be explained largely by two effects: (1) the uncoupled response of amide groups located on opposite sides of the α-helix will have different orientations with respect to the interface and therefore different local environments affecting the local mode vibrations and (2) vibrational splitting from nearest neighbor coupling evaluated as inter-residue vibrational correlation. The conclusion is consistent with frequency mapping techniques with an empirically based ensemble of peptide structures, thus showing how time correlation approaches and frequency mapping techniques can give independent yet complementary molecular descriptions of protein vSFG. These models reveal the sensitive relationship between protein structure and their amide I response, allowing exploitation of the complicated molecular vibrations and their interference to derive the structures of proteins under native conditions at interfaces.
Collapse
Affiliation(s)
- Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
Fried SDE, Zheng C, Mao Y, Markland TE, Boxer SG. Solvent Organization and Electrostatics Tuned by Solute Electronic Structure: Amide versus Non-Amide Carbonyls. J Phys Chem B 2022; 126:5876-5886. [PMID: 35901512 PMCID: PMC10081530 DOI: 10.1021/acs.jpcb.2c03095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to exploit carbonyl groups to measure electric fields in enzymes and other complex reactive environments by using the vibrational Stark effect has inspired growing interest in how these fields can be measured, tuned, and ultimately designed. Previous studies have concentrated on the role of the solvent in tuning the fields exerted on the solute. Here, we explore instead the role of the solute electronic structure in modifying the local solvent organization and electric field exerted on the solute. By measuring the infrared absorption spectra of amide-containing molecules, as prototypical peptides, and contrasting them with non-amide carbonyls in a wide range of solvents, we show that these solutes experience notable differences in their frequency shifts in polar solvents. Using vibrational Stark spectroscopy and molecular dynamics simulations, we demonstrate that while some of these differences can be rationalized by using the distinct intrinsic Stark tuning rates of the solutes, the larger frequency shifts for amides and dimethylurea primarily result from the larger solvent electric fields experienced by their carbonyl groups. These larger fields arise due to their stronger p-π conjugation, which results in larger C═O bond dipole moments that further induce substantial solvent organization. Using electronic structure calculations, we decompose the electric fields into contributions from solvent molecules that are in the first solvation shell and those from the bulk and show that both of these contributions are significant and become larger with enhanced conjugation in solutes. These results show that structural modifications of a solute can be used to tune both the solvent organization and electrostatic environment, indicating the importance of a solute-centric paradigm in modulating and designing the electrostatic environment in condensed-phase chemical processes.
Collapse
Affiliation(s)
- Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chu Zheng
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Tutorials in vibrational sum frequency generation spectroscopy. III. Collecting, processing, and analyzing vibrational sum frequency generation spectra. Biointerphases 2022; 17:041201. [PMID: 35931562 DOI: 10.1116/6.0001951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this Tutorial series, we aim to provide an accessible introduction to vibrational sum frequency generation (VSFG) spectroscopy, targeted toward people entering the VSFG world without a rigorous formal background in optical physics or nonlinear spectroscopy. In this article, we discuss in detail the processes of collecting and processing VSFG data, and user-friendly processing software (sfgtools) is provided for use by people new to the field. Some discussion of analyzing VSFG spectra is also given, specifically with a discussion of fitting homodyne VSFG spectra, and a discussion of what can be learned (both qualitatively and quantitatively) from VSFG spectra.
Collapse
|
10
|
Lewis NHC, Dereka B, Zhang Y, Maginn EJ, Tokmakoff A. From Networked to Isolated: Observing Water Hydrogen Bonds in Concentrated Electrolytes with Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2022; 126:5305-5319. [PMID: 35829623 DOI: 10.1021/acs.jpcb.2c03341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superconcentrated electrolytes have emerged as a promising class of materials for energy storage devices, with evidence that high voltage performance is possible even with water as the solvent. Here, we study the changes in the water hydrogen bonding network induced by the dissolution of lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in concentrations ranging from the dilute to the superconcentrated regimes. Using time-resolved two-dimensional infrared spectroscopy, we observe the progressive disruption of the water-water hydrogen bond network and the appearance of isolated water molecules interacting only with ions, which can be identified and spectroscopically isolated through the intermolecular cross-peaks between the water and the TFSI- ions. Analyzing the vibrational relaxation of excitations of the H2O stretching mode, we observe a transition in the dominant relaxation path as the bulk-like water vanishes and is replaced by ion-solvation water with the rapid single-step relaxation of delocalized stretching vibrations into the low frequency modes being replaced by multistep relaxation through the intramolecular H2O bend and into the TFSI- high frequency modes prior to relaxing to the low frequency structural degrees of freedom. These results definitively demonstrate the absence of vibrationally bulk-like water in the presence of high concentrations of LiTFSI and especially in the superconcentrated regime, while additionally revealing aspects of the water hydrogen bond network that have been difficult to discern from the vibrational spectroscopy of the neat liquid.
Collapse
Affiliation(s)
- Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Bogdan Dereka
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yong Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
11
|
Zhu Q, Wallentine SK, Deng GH, Rebstock JA, Baker LR. The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO 2 Reduction on Gold. JACS AU 2022; 2:472-482. [PMID: 35252996 PMCID: PMC8889607 DOI: 10.1021/jacsau.1c00512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 06/14/2023]
Abstract
The selectivity and activity of the carbon dioxide reduction (CO2R) reaction are sensitive functions of the electrolyte cation. By measuring the vibrational Stark shift of in situ-generated CO on Au in the presence of alkali cations, we quantify the total electric field present at catalytic active sites and deconvolute this field into contributions from (1) the electrochemical Stern layer and (2) the Onsager (or solvation-induced) reaction field. Contrary to recent theoretical reports, the CO2R kinetics does not depend on the Stern field but instead is closely correlated with the strength of the Onsager reaction field. These results show that in the presence of adsorbed (bent) CO2, the Onsager field greatly exceeds the Stern field and is primarily responsible for CO2 activation. Additional measurements of the cation-dependent water spectra using vibrational sum frequency generation spectroscopy show that interfacial solvation strongly influences the CO2R activity. These combined results confirm that the cation-dependent interfacial water structure and its associated electric field must be explicitly considered for accurate understanding of CO2R reaction kinetics.
Collapse
|
12
|
Lee E, You X, Baiz CR. Interfacial dynamics in inverted-headgroup lipid membranes. J Chem Phys 2022; 156:075102. [PMID: 35183070 PMCID: PMC8858029 DOI: 10.1063/5.0080153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inverted-headgroup (choline-phosphate) lipids are synthetic lipids that are not found in nature and are used as model systems to understand the role of headgroup dipole orientation. Recently, studies revealed that the net orientation of interfacial water strongly depends on the headgroup electrostatics, i.e., the charges and dipole generated by the phosphate and the choline groups. In order to characterize interfacial H-bond dynamics, we measured two-dimensional infrared spectra of the ester carbonyl band and performed molecular dynamics simulations in fully hydrated 1,2-dioleoyl-sn-glycero-3-phosphocholine and 2-((2,3-bis(oleoyloxy)propyl)-dimethyl-ammonio)ethyl ethyl phosphate (DOCPe) lipid bilayers. The experiments and simulations suggest that the reverse dipole generated by the inverted-headgroup in DOCPe does not affect the carbonyl H-bond populations or the interfacial water H-bond dynamics. However, while phosphate-associated waters in both lipids appear to show a similar H-bond structure, carbonyl-associated waters are characterized by a slightly disrupted H-bond structure in the DOCPe bilayer, especially within the second hydration shell. Our findings show that changes in net water orientation perturb the water H-bonds at the linker region between the headgroup and the lipid tail, although this perturbation is weak.
Collapse
|
13
|
Dereka B, Lewis NHC, Keim JH, Snyder SA, Tokmakoff A. Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. J Phys Chem B 2021; 126:278-291. [PMID: 34962409 PMCID: PMC8762666 DOI: 10.1021/acs.jpcb.1c09572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetonitrile has emerged as a solvent candidate for novel electrolyte formulations in metal-ion batteries and supercapacitors. It features a bright local C≡N stretch vibrational mode whose infrared (IR) signature is sensitive to battery-relevant cations (Li+, Mg2+, Zn2+, Ca2+) both in pure form and in the presence of water admixture across a full possible range of concentrations from the dilute to the superconcentrated regime. Stationary and time-resolved IR spectroscopy thus emerges as a natural tool to study site-specific intermolecular interactions from the solvent perspective without introducing an extrinsic probe that perturbs solution morphology and may not represent the intrinsic dynamics in these electrolytes. The metal-coordinated acetonitrile, water-separated metal-acetonitrile pair, and free solvent each have a distinct vibrational signature that allows their unambiguous differentiation. The IR band frequency of the metal-coordinated acetonitrile depends on the ion charge density. To study the ion transport dynamics, it is necessary to differentiate energy-transfer processes from structural interconversions in these electrolytes. Isotope labeling the solvent is a necessary prerequisite to separate these processes. We discuss the design principles and choice of the CD313CN label and characterize its vibrational spectroscopy in these electrolytes. The Fermi resonance between 13C≡N and C-D stretches complicates the spectral response but does not prevent its effective utilization. Time-resolved two-dimensional (2D) IR spectroscopy can be performed on a mixture of acetonitrile isotopologues and much can be learned about the structural dynamics of various species in these formulations.
Collapse
Affiliation(s)
- Bogdan Dereka
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| | - Jonathan H Keim
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.,Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60637, United States
| |
Collapse
|
14
|
Wang X, Li X, He X, Zhang JZH. A fixed multi-site interaction charge model for an accurate prediction of the QM/MM interactions. Phys Chem Chem Phys 2021; 23:21001-21012. [PMID: 34522933 DOI: 10.1039/d1cp02776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fixed multi-site interaction charge (FMIC) model was proposed for the accurate prediction of intermolecular electrostatic interactions based on the quantum mechanical linear response of a molecule to an external electric field. In such a model, some additional off-center interaction sites were added for capturing multipole interactions for a given molecule. By multivariate least-square fitting analysis of the calculated QM/MM interactions of a given molecule with the electrostatic environment and the electrostatic potentials of the environment at the pre-defined distributed interaction sites, the FMIC of the molecule was obtained. The model system of CO in myoglobin (Mb) was utilized to demonstrate the derivation of the FMIC. The accuracy of FMIC in predicting the electrostatic interactions between CO and the Mb environment was investigated using 10 000 different Mb-CO configurations generated from the 400 ps QM/MM MD simulation. In comparison to the QM/MM calculations at the B3LYP/aug-cc-pVTZ/ff99SB level, the mean unsigned error (MUE) of the results based on the FMIC model was merely 0.10 kcal mol-1, and the root mean square error (RMSE) was only 0.13 kcal mol-1, which are significantly lower than the results predicted by the ESP charge model (MUE = 1.45 kcal mol-1, and RMSE = 1.7 kcal mol-1, respectively). The transferability of FMIC was tested by applying the obtained FMIC in the wild type Mb-CO system to the mutants of V68F and H64L Mb-CO systems. The MUEs of the obtained results for 10 000 different configurations are both smaller than 0.2 kcal mol-1 for the V68F and H64L Mb-CO systems in comparison to the B3LYP/aug-cc-pVTZ/ff99SB calculations, and the RMSEs are also lower than 0.2 kcal mol-1 for both mutants. The applications of FMIC were extended to model the electrostatic interactions between a hydrogen fluoride molecule and 492 waters in a truncated octahedron box; our study showed that the FMIC could give satisfactory results with a MUE of 0.12 kcal mol-1 and a RMSE of 0.16 kcal mol-1 in comparison to the B3LYP/aug-cc-pVDZ/TIP3P calculations for 10 000 different configurations generated using the 10 ns classical MD simulation. Therefore, the FMIC method provides an accurate and efficient tool for predicting intermolecular electrostatic interactions, which can be utilized in the future development of molecular force fields.
Collapse
Affiliation(s)
- Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China. .,Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xilong Li
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Xiao He
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China. .,Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
15
|
Foster MJ, Carpenter AP, Richmond GL. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces. J Phys Chem B 2021; 125:9629-9640. [PMID: 34402616 DOI: 10.1021/acs.jpcb.1c05508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surfactants containing pH-switchable, carboxylic acid moieties are utilized in a variety of environmental, industrial, and biological applications that require controlled stability of hydrophobic droplets in water. For nanoemulsions, kinetically stable oil droplets in water, surface adsorption of the anionic form of the carboxylic acid surfactant stabilizes the droplet, whereas a dominant surface presence of the neutral form leads to destabilization. Through the use of dynamic light scattering, ζ-potential, and vibrational sum frequency scattering spectroscopy (VSFSS), we investigate this mechanism and the relative surface population of the neutral and charged species as pH is adjusted. We find that the relative population of the two surfactant species at the droplet surface is distinctly different than their bulk equilibrium concentrations. The ζ-potential measurements show that the surface concentration of the charged surfactant stays nearly constant throughout the stabilizing pH range. In contrast, VSFSS shows that the neutral carboxylic acid form increasingly adsorbs to the surface with increased acidity. The spectral features of the headgroup vibrational modes confirm this behavior and go further to reveal additional molecular details of their adsorption. A significant hydrogen-bonding interaction occurs between the headgroups that, along with hydrophobic chain-chain interactions, assists in drawing more carboxylic acid surfactant to the interface. The charged surfactant provides the stabilizing force for these droplets, while the neutral surfactant introduces complexity to the interfacial structure as the pH is lowered. The results are significantly different than what has been found for the planar oil/water studies where stabilization of the interface is not a factor.
Collapse
Affiliation(s)
- Marc J Foster
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Andrew P Carpenter
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
16
|
Kozuch J, Schneider SH, Zheng C, Ji Z, Bradshaw RT, Boxer SG. Testing the Limitations of MD-Based Local Electric Fields Using the Vibrational Stark Effect in Solution: Penicillin G as a Test Case. J Phys Chem B 2021; 125:4415-4427. [PMID: 33900769 PMCID: PMC8522303 DOI: 10.1021/acs.jpcb.1c00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncovalent interactions underlie nearly all molecular processes in the condensed phase from solvation to catalysis. Their quantification within a physically consistent framework remains challenging. Experimental vibrational Stark effect (VSE)-based solvatochromism can be combined with molecular dynamics (MD) simulations to quantify the electrostatic forces in solute-solvent interactions for small rigid molecules and, by extension, when these solutes bind in enzyme active sites. While generalizing this approach toward more complex (bio)molecules, such as the conformationally flexible and charged penicillin G (PenG), we were surprised to observe inconsistencies in MD-based electric fields. Combining synthesis, VSE spectroscopy, and computational methods, we provide an intimate view on the origins of these discrepancies. We observe that the electric fields are correlated to conformation-dependent effects of the flexible PenG side chain, including both the local solvation structure and solute conformational sampling in MD. Additionally, we identified that MD-based electric fields are consistently overestimated in three-point water models in the vicinity of charged groups; this cannot be entirely ameliorated using polarizable force fields (AMOEBA) or advanced water models. This work demonstrates the value of the VSE as a direct method for experiment-guided refinements of MD force fields and establishes a general reductionist approach to calibrating vibrational probes for complex (bio)molecules.
Collapse
Affiliation(s)
- Jacek Kozuch
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Samuel H Schneider
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Chu Zheng
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Zhe Ji
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Richard T Bradshaw
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
17
|
Wang X, Yan J, Zhang H, Xu Z, Zhang JZH. An electrostatic energy-based charge model for molecular dynamics simulation. J Chem Phys 2021; 154:134107. [PMID: 33832260 DOI: 10.1063/5.0043707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The interactions of the polar chemical bonds such as C=O and N-H with an external electric field were investigated, and a linear relationship between the QM/MM interaction energies and the electric field along the chemical bond is established in the range of weak to intermediate electrical fields. The linear relationship indicates that the electrostatic interactions of a polar group with its surroundings can be described by a simple model of a dipole with constant moment under the action of an electric field. This relationship is employed to develop a general approach to generating an electrostatic energy-based charge (EEC) model for molecules containing single or multiple polar chemical bonds. Benchmark test studies of this model were carried out for (CH3)2-CO and N-methyl acetamide in explicit water, and the result shows that the EEC model gives more accurate electrostatic energies than those given by the widely used charge model based on fitting to the electrostatic potential (ESP) in direct comparison to the energies computed by the QM/MM method. The MD simulations of the electric field at the active site of ketosteroid isomerase based on EEC demonstrated that EEC gave a better representation of the electrostatic interaction in the hydrogen-bonding environment than the Amber14SB force field by comparison with experiment. The current study suggests that EEC should be better suited for molecular dynamics study of molecular systems with polar chemical bonds such as biomolecules than the widely used ESP or RESP (restrained ESP) charge models.
Collapse
Affiliation(s)
- Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jinhua Yan
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Hang Zhang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zhousu Xu
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
18
|
Loewen ND, Pattanayak S, Herber R, Fettinger JC, Berben LA. Quantification of the Electrostatic Effect on Redox Potential by Positive Charges in a Catalyst Microenvironment. J Phys Chem Lett 2021; 12:3066-3073. [PMID: 33750139 DOI: 10.1021/acs.jpclett.1c00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charged functional groups in the secondary coordination sphere (SCS) of a heterogeneous nanoparticle or homogeneous electrocatalyst are of growing interest due to enhancements in reactivity that derive from specific interactions that stabilize substrate binding or charged intermediates. At the same time, accurate benchmarking of electrocatalyst systems most often depends on the development of linear free-energy scaling relationships. However, the thermodynamic axis in those kinetic-thermodynamic correlations is most often obtained by a direct electrochemical measurement of the catalyst redox potential and might be influenced by electrostatic effects of a charged SCS. In this report, we systematically probe positive charges in a SCS and their electrostatic contributions to the electrocatalyst redox potential. A series of 11 iron carbonyl clusters modified with charged and uncharged ligands was probed, and a linear correlation between the νCO absorption band energy and electrochemical redox potentials is observed except where the SCS is positively charged.
Collapse
Affiliation(s)
- Natalia D Loewen
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Santanu Pattanayak
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Rolfe Herber
- Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - James C Fettinger
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
19
|
Patrow JG, Cheng Y, Pyles CG, Luo B, Tonks IA, Massari AM. Spectroscopic Study of Sol-Gel Entrapped Triruthenium Dodecacarbonyl Catalyst Reveals Hydride Formation. J Phys Chem Lett 2020; 11:7394-7399. [PMID: 32820929 DOI: 10.1021/acs.jpclett.0c02316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Triruthenium dodecacarbonyl exhibits increased catalytic activity toward hydrogenation reactions when encapsulated in alumina sol-gels. In this study, we demonstrate structural and electronic changes induced by the encapsulation process. Fourier transform infrared (FTIR) spectroscopy reveals that the carbonyl vibrational modes dramatically red shift during aging in the sol-gel glass. These shifts are attributed to the formation of the metal hydride: [HRu3(CO)11]-. A comparison to the FTIR spectrum of synthesized [NEt4][HRu3(CO)11] confirms this assignment. XPS studies show that the Ru 3d5/2 peak of [HRu3(CO)11]- also shifts to lower binding energy, consistent with an increased electron density on the Ru nuclei compared to Ru3(CO)12 and confirmed by density functional calculations. This study should open the door to further investigations into the hydride's role in the previously observed catalytic activity. To the best of our knowledge, this is the first study to identify the presence of [HRu3(CO)11]- in the alumina sol-gel.
Collapse
Affiliation(s)
- Joel G Patrow
- University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Yukun Cheng
- University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Cynthia G Pyles
- University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Bing Luo
- University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Ian A Tonks
- University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Aaron M Massari
- University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
20
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
21
|
Lewis NHC, Iscen A, Felts A, Dereka B, Schatz GC, Tokmakoff A. Vibrational Probe of Aqueous Electrolytes: The Field Is Not Enough. J Phys Chem B 2020; 124:7013-7026. [DOI: 10.1021/acs.jpcb.0c05510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nicholas H. C. Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aysenur Iscen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Alanna Felts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bogdan Dereka
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Roberson MG, Duncan JM, Flieth KJ, Geary LM, Tucker MJ. Photo-initiated rupture of azobenzene micelles to enable the spectroscopic analysis of antimicrobial peptide dynamics. RSC Adv 2020; 10:21464-21472. [PMID: 32879729 PMCID: PMC7449587 DOI: 10.1039/d0ra01920h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
Antimicrobial peptides (AMPs) show promise for the treatment of bacterial infections, but many have undesired hemolytic activities. The AMP MP1 not only has broad spectrum bactericidal activity, but has been shown to have antitumor activity. The interaction between AMPs and cellular membranes gives rise to a peptide's cell-specificity and activity. However, direct analysis of the biophysical interactions between peptides and membrane is complex, in part due to the nature of membrane environments as well as structural changes in the peptide that occurs upon binding to the membrane. In order to investigate the interplay between cell selectivity, activity, and secondary structural changes involved in antimicrobial peptide activity, we sought to implement photolizable membrane mimics to assess the types of information available from infrared spectroscopic measurements that follow from photoinitiated peptide dynamics. Azo-surfactants (APEG) form micelles containing a photolizable azobenzene core, which upon irradiation can induce membrane deformation resulting in breakdown of micelles. Spectroscopic analysis of membrane deformation may provide insights into the physical behavior associated with unfolding and dissociation of antimicrobial peptides within a membrane environment. Herein, we synthesized and characterized two new azo-surfactants, APEGTMG and APEGNEt2MeI. Furthermore, we demonstrate the viability of azosurfactants as membrane mimics by examining both the membrane binding and dissociation induced secondary structural changes of the antimicrobial peptide, MP1.
Collapse
Affiliation(s)
- Matthew G Roberson
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Julia M Duncan
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Keveen J Flieth
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Laina M Geary
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| |
Collapse
|
23
|
Liu J, Huang X, Fan H, Su W, Chen X, Zhang W. Ester-derivatized indoles as sensitive infrared probes for local environment. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Shi L, Hu F, Min W. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. Nat Commun 2019; 10:4764. [PMID: 31628307 PMCID: PMC6802100 DOI: 10.1038/s41467-019-12708-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/25/2019] [Indexed: 11/15/2022] Open
Abstract
Water is arguably the most common and yet least understood material on Earth. Indeed, the biophysical behavior of water in crowded intracellular milieu is a long-debated issue. Understanding of the spatial and compositional heterogeneity of water inside cells remains elusive, largely due to a lack of proper water-sensing tools with high sensitivity and spatial resolution. Recently, stimulated Raman excited fluorescence (SREF) microscopy was reported as the most sensitive vibrational imaging in the optical far field. Herein we develop SREF into a water-sensing tool by coupling it with vibrational solvatochromism. This technique allows us to directly visualize spatially-resolved distribution of water states inside single mammalian cells. Qualitatively, our result supports the concept of biological water and reveals intracellular water heterogeneity between nucleus and cytoplasm. Quantitatively, we unveil a compositional map of the water pool inside living cells. Hence we hope SREF will be a promising tool to study intracellular water and its relationship with cellular activities.
Collapse
Affiliation(s)
- Lixue Shi
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
25
|
Yu Y, Shi L. Vibrational solvatochromism of the ester carbonyl vibration of PCBM in organic solutions. J Chem Phys 2019. [DOI: 10.1063/1.5111046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Yue Yu
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Liang Shi
- School of Natural Sciences, University of California, Merced, California 95343, USA
| |
Collapse
|
26
|
Cai K, Zheng X, Liu J, Du F, Yan G, Zhuang D, Yan S. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:391-400. [PMID: 31059891 DOI: 10.1016/j.saa.2019.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has been known as particularly well-suited for deciphering the polypeptide's structure. To decode structural information encoded in IR spectra, we developed amide-I frequency maps on the basis of model dipeptides to correlate the amide-I frequency of interest to the combination of the calculated secondary structure dependent amide-I frequency by using DFT method and the electrostatic potentials that projected onto the amide unit from the micro-environment within molecular mechanics force field. The constructed maps were applied to model dipeptides and amyloid β-peptide fragment (Aβ25-35). The dipeptide specified map (DS map) and the hybrid map (HYB map) predicted amide-I bands of Aβ25-35 in solution satisfactorily reproduce experimental observation, and indicate the preference of forming β-sheet and random coil structure for Aβ25-35 in D2O just as the results of cluster analysis suggested. These maps with secondary structural sensitivity and amino acid residue specificity open up a way for the interpretation of amide-I vibrations and show their potentials in the understanding of molecular structure of polypeptides in solution.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China; Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, PR China.
| | - Xuan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, PR China
| | - Danling Zhuang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Siyi Yan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
27
|
Theoretical analysis and modeling of the electrostatic responses of the vibrational and NMR spectroscopic properties of the cyanide anion. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Jansen TLC, Saito S, Jeon J, Cho M. Theory of coherent two-dimensional vibrational spectroscopy. J Chem Phys 2019; 150:100901. [DOI: 10.1063/1.5083966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas la Cour Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan and The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
29
|
Roberson MG, Smith DK, White SM, Wallace IS, Tucker MJ. Interspecies Bombolitins Exhibit Structural Diversity upon Membrane Binding, Leading to Cell Specificity. Biophys J 2019; 116:1064-1074. [PMID: 30824115 DOI: 10.1016/j.bpj.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023] Open
Abstract
Bombolitins, a class of peptides produced by bees of the genus Bombus, target and disrupt cellular membranes, leading to lysis. Antimicrobial peptides exhibit various mechanisms of action resulting from the interplay between peptide structure, lipid composition, and cellular target membrane selectivity. Herein, two bombolitins displaying significant amino-acid-sequence similarity, BII and BL6, were assessed for antimicrobial activity as well as correlated dodecylphosphocholine (DPC) micelle binding and membrane-induced peptide conformational changes. Infrared and circular dichroism spectroscopies were used to assess the structure-function relationship of each bombolitin, and the results indicate that BII forms a rigid and helically ordered secondary structure upon binding to DPC micelles, whereas BL6 largely lacks secondary structural order. Moreover, the binding affinity of each peptide to DPC micelles was determined, revealing that BL6 displayed a difference in binding affinity by over two orders of magnitude. Further investigations into the growth-inhibitory activity of the two bombolitins were performed against Escherichia coli and Saccharomyces cerevisiae. Interestingly, BII specifically targeted S. cerevisiae, whereas BL6 more effectively inhibited E. coli growth. Overall, the antimicrobial selectivity and specificity of BII and BL6 are largely dependent on the primary as well as secondary structural content of the peptides and the membrane composition.
Collapse
Affiliation(s)
| | - Devin K Smith
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Simon M White
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada
| | - Ian S Wallace
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada.
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada.
| |
Collapse
|
30
|
Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019; 24:molecules24010186. [PMID: 30621325 PMCID: PMC6337179 DOI: 10.3390/molecules24010186] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Amyloid diseases, including neurodegenerative diseases such as Alzheimer’s and Parkinson’s, are linked to a poorly understood progression of protein misfolding and aggregation events that culminate in tissue-selective deposition and human pathology. Elucidation of the mechanistic details of protein aggregation and the structural features of the aggregates is critical for a comprehensive understanding of the mechanisms of protein oligomerization and fibrillization. Vibrational spectroscopies, such as Fourier transform infrared (FTIR) and Raman, are powerful tools that are sensitive to the secondary structure of proteins and have been widely used to investigate protein misfolding and aggregation. We address the application of the vibrational approaches in recent studies of conformational dynamics and structural characteristics of protein oligomers and amyloid fibrils. In particular, introduction of isotope labelled carbonyl into a peptide backbone, and incorporation of the extrinsic unnatural amino acids with vibrational moieties on the side chain, have greatly expanded the ability of vibrational spectroscopy to obtain site-specific structural and dynamic information. The applications of these methods in recent studies of protein aggregation are also reviewed.
Collapse
|
31
|
Ramos S, Horness RE, Collins JA, Haak D, Thielges MC. Site-specific 2D IR spectroscopy: a general approach for the characterization of protein dynamics with high spatial and temporal resolution. Phys Chem Chem Phys 2019; 21:780-788. [PMID: 30548035 PMCID: PMC6360950 DOI: 10.1039/c8cp06146g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conformational heterogeneity and dynamics of protein side chains contribute to function, but investigating exactly how is hindered by experimental challenges arising from the fast timescales involved and the spatial heterogeneity of protein structures. The potential of two-dimensional infrared (2D IR) spectroscopy for measuring conformational heterogeneity and dynamics with unprecedented spatial and temporal resolution has motivated extensive effort to develop amino acids with functional groups that have frequency-resolved absorptions to serve as probes of their protein microenvironments. We demonstrate the full advantage of the approach by selective incorporation of the probe p-cyanophenylalanine at six distinct sites in a Src homology 3 domain and the application of 2D IR spectroscopy to site-specifically characterize heterogeneity and dynamics and their contribution to cognate ligand binding. The approach revealed a wide range of microenvironments and distinct responses to ligand binding, including at the three adjacent, conserved aromatic residues that form the recognition surface of the protein. Molecular dynamics simulations performed for all the labeled proteins provide insight into the underlying heterogeneity and dynamics. Similar application of 2D IR spectroscopy and site-selective probe incorporation will allow for the characterization of heterogeneity and dynamics of other proteins, how heterogeneity and dynamics are affected by solvation and local structure, and how they might contribute to biological function.
Collapse
Affiliation(s)
- Sashary Ramos
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel E. Horness
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jessica A. Collins
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David Haak
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
An Ab Initio QM/MM Study of the Electrostatic Contribution to Catalysis in the Active Site of Ketosteroid Isomerase. Molecules 2018; 23:molecules23102410. [PMID: 30241317 PMCID: PMC6222312 DOI: 10.3390/molecules23102410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/28/2023] Open
Abstract
The electric field in the hydrogen-bond network of the active site of ketosteroid isomerase (KSI) has been experimentally measured using vibrational Stark effect (VSE) spectroscopy, and utilized to study the electrostatic contribution to catalysis. A large gap was found in the electric field between the computational simulation based on the Amber force field and the experimental measurement. In this work, quantum mechanical (QM) calculations of the electric field were performed using an ab initio QM/MM molecular dynamics (MD) simulation and electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. Our results demonstrate that the QM-derived electric field based on the snapshots from QM/MM MD simulation could give quantitative agreement with the experiment. The accurate calculation of the electric field inside the protein requires both the rigorous sampling of configurations, and a QM description of the electrostatic field. Based on the direct QM calculation of the electric field, we theoretically confirmed that there is a linear correlation relationship between the activation free energy and the electric field in the active site of wild-type KSI and its mutants (namely, D103N, Y16S, and D103L). Our study presents a computational protocol for the accurate simulation of the electric field in the active site of the protein, and provides a theoretical foundation that supports the link between electric fields and enzyme catalysis.
Collapse
|
33
|
Grafton AB, Cheatum CM. Two-dimensional infrared study of the C D and C O stretching vibrations in strongly hydrogen-bonded complexes. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Wang XW, Zhang JZH, He X. Ab initio Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulation of CO in the Heme Distal Pocket of Myoglobin. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1709169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xian-wei Wang
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Zhejiang Provincial Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Hangzhou 310014, China
| | - John Z. H. Zhang
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
| | - Xiao He
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
35
|
Torii H. Strategy for Modeling the Electrostatic Responses of the Spectroscopic Properties of Proteins. J Phys Chem B 2017; 122:154-164. [PMID: 29192780 DOI: 10.1021/acs.jpcb.7b10791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For better understanding and more efficient use of the spectroscopic probes (vibrational and NMR) of the local electrostatic situations inside proteins, appropriate modeling of the properties of those probes is essential. The present study is devoted to examining the strategy for constructing such models. A more well-founded derivation than the ones in previous studies is given in constructing the models. Theoretical analyses are conducted on two representative example cases related to proteins, i.e., the peptide group of the main chains and the CO and NO ligands to the Fe2+ ion of heme, with careful treatment of the behavior of electrons in the electrostatic responses and with verification of consistency with observable quantities. It is shown that, for the stretching frequencies and NMR chemical shifts, it is possible to construct reasonable electrostatic interaction models that encompass the situations of hydration and uniform electric field environment and thus are applicable also to the cases of nonuniform electrostatic situations, which are highly expected for inside of proteins.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, Faculty of Education and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University , 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
36
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Cai K, Zheng X, Du F. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:150-157. [PMID: 28448953 DOI: 10.1016/j.saa.2017.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China.
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
38
|
Chalyavi F, Hogle DG, Tucker MJ. Tyrosine as a Non-perturbing Site-Specific Vibrational Reporter for Protein Dynamics. J Phys Chem B 2017; 121:6380-6389. [DOI: 10.1021/acs.jpcb.7b04999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - David G. Hogle
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
39
|
Abstract
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Collapse
Affiliation(s)
- Stephen D Fried
- Proteins and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
40
|
Schneider SH, Kratochvil HT, Zanni MT, Boxer SG. Solvent-Independent Anharmonicity for Carbonyl Oscillators. J Phys Chem B 2017; 121:2331-2338. [PMID: 28225620 DOI: 10.1021/acs.jpcb.7b00537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physical origins of vibrational frequency shifts have been extensively studied in order to understand noncovalent intermolecular interactions in the condensed phase. In the case of carbonyls, vibrational solvatochromism, MD simulations, and vibrational Stark spectroscopy suggest that the frequency shifts observed in simple solvents arise predominately from the environment's electric field due to the vibrational Stark effect. This is contrary to many previously invoked descriptions of vibrational frequency shifts, such as bond polarization, whereby the bond's force constant and/or partial nuclear charges are altered due to the environment, often illustrated in terms of favored resonance structures. Here we test these hypotheses using vibrational solvatochromism as measured using 2D IR to assess the solvent dependence of the bond anharmonicity. These results indicate that the carbonyl bond's anharmonicity is independent of solvent as tested using hexanes, DMSO, and D2O and is supported by simulated 2D spectra. In support of the linear vibrational Stark effect, these 2D IR measurements are consistent with the assertion that the Stark tuning rate is unperturbed by the electric field generated by both hydrogen and non-hydrogen bonding environments and further extends the general applicability of carbonyl probes for studying intermolecular interactions.
Collapse
Affiliation(s)
- Samuel H Schneider
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
41
|
Sorenson SA, Patrow JG, Dawlaty JM. Solvation Reaction Field at the Interface Measured by Vibrational Sum Frequency Generation Spectroscopy. J Am Chem Soc 2017; 139:2369-2378. [DOI: 10.1021/jacs.6b11940] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shayne A. Sorenson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Joel G. Patrow
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M. Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
42
|
Ahmed IA, Gai F. Simple method to introduce an ester infrared probe into proteins. Protein Sci 2017; 26:375-381. [PMID: 27813296 DOI: 10.1002/pro.3076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
Abstract
The ester carbonyl stretching vibration has recently been shown to be a sensitive and convenient infrared (IR) probe of protein electrostatics due to the linear dependence of its frequency on local electric field. While an ester moiety can be easily incorporated into peptides via solid-phase synthesis, currently there is no method available to site-specifically incorporate it into a large protein. Herein, we show that it is possible to use a cysteine alkylation reaction to achieve this goal and demonstrate the feasibility of this simple method by successfully incorporating a methyl ester group (CH2 COOCH3 ) into a model peptide (YGGCGG), two amyloid-forming peptides derived from the insulin B chain and Aβ, and bovine serum albumin (BSA). IR results obtained with those peptide and protein systems further confirm the utility of this vibrational probe in monitoring, for example, the structural integrity of amyloid fibrils and ligand binding-induced changes in protein local hydration status.
Collapse
Affiliation(s)
- Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
43
|
Berquist EJ, Daly CA, Brinzer T, Bullard KK, Campbell ZM, Corcelli SA, Garrett-Roe S, Lambrecht DS. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: I. Ab Initio Calculations. J Phys Chem B 2016; 121:208-220. [DOI: 10.1021/acs.jpcb.6b09489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric J. Berquist
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Clyde A. Daly
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Thomas Brinzer
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Krista K. Bullard
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary M. Campbell
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Steven A. Corcelli
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Sean Garrett-Roe
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel S. Lambrecht
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
44
|
Daly CA, Berquist EJ, Brinzer T, Garrett-Roe S, Lambrecht DS, Corcelli SA. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map. J Phys Chem B 2016; 120:12633-12642. [DOI: 10.1021/acs.jpcb.6b09509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clyde A. Daly
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46656, United States
| | - Eric J. Berquist
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Thomas Brinzer
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Sean Garrett-Roe
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel S. Lambrecht
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Pittsburgh
Quantum Institute, University of Pittsburgh, 3943 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Steven A. Corcelli
- Department
of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46656, United States
| |
Collapse
|
45
|
Lewis NHC, Gruenke NL, Oliver TAA, Ballottari M, Bassi R, Fleming GR. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy. J Phys Chem Lett 2016; 7:4197-4206. [PMID: 27704843 PMCID: PMC6314458 DOI: 10.1021/acs.jpclett.6b02280] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this work, we present two-dimensional electronic-vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Finally, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.
Collapse
Affiliation(s)
- Nicholas H C Lewis
- Department of Chemistry, University of California , Berkeley, California 94 720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Natalie L Gruenke
- Department of Chemistry, University of California , Berkeley, California 94 720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Thomas A A Oliver
- Department of Chemistry, University of California , Berkeley, California 94 720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Facoltà di Scienze, Universitá di Verona , Strada Le Grazie, I-37134 Verona, Italia
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Facoltà di Scienze, Universitá di Verona , Strada Le Grazie, I-37134 Verona, Italia
| | - Graham R Fleming
- Department of Chemistry, University of California , Berkeley, California 94 720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Schneider SH, Boxer SG. Vibrational Stark Effects of Carbonyl Probes Applied to Reinterpret IR and Raman Data for Enzyme Inhibitors in Terms of Electric Fields at the Active Site. J Phys Chem B 2016; 120:9672-84. [PMID: 27541577 DOI: 10.1021/acs.jpcb.6b08133] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IR and Raman frequency shifts have been reported for numerous probes of enzyme transition states, leading to diverse interpretations. In the case of the model enzyme ketosteroid isomerase (KSI), we have argued that IR spectral shifts for a carbonyl probe at the active site can provide a connection between the active site electric field and the activation free energy (Fried et al. Science 2014, 346, 1510-1514). Here we generalize this approach to a much broader set of carbonyl probes (e.g., oxoesters, thioesters, and amides), first establishing the sensitivity of each probe to an electric field using vibrational Stark spectroscopy, vibrational solvatochromism, and MD simulations, and then applying these results to reinterpret data already in the literature for enzymes such as 4-chlorobenzoyl-CoA dehalogenase and serine proteases. These results demonstrate that the vibrational Stark effect provides a general framework for estimating the electrostatic contribution to the catalytic rate and may provide a metric for the design or modification of enzymes. Opportunities and limitations of the approach are also described.
Collapse
Affiliation(s)
- Samuel H Schneider
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
47
|
Pan X, Schwartz SD. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models. J Phys Chem B 2016; 120:6612-20. [PMID: 27347759 DOI: 10.1021/acs.jpcb.6b05119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
48
|
Abstract
The specific electric field generated by a protease at its active site is considered as an important source of the catalytic power. Accurate calculation of electric field at the active site of an enzyme has both fundamental and practical importance. Measuring site-specific changes of electric field at internal sites of proteins due to, eg, mutation, has been realized by using molecular probes with CO or CN groups in the context of vibrational Stark effect. However, theoretical prediction of change in electric field inside a protein based on a conventional force field, such as AMBER or OPLS, is often inadequate. For such calculation, quantum chemical approach or quantum-based polarizable or polarized force field is highly preferable. Compared with the result from conventional force field, significant improvement is found in predicting experimentally measured mutation-induced electric field change using quantum-based methods, indicating that quantum effect such as polarization plays an important role in accurate description of electric field inside proteins. In comparison, the best theoretical prediction comes from fully quantum mechanical calculation in which both polarization and inter-residue charge transfer effects are included for accurate prediction of electrostatics in proteins.
Collapse
Affiliation(s)
- X Wang
- Center for Optics & Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - X He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.
| | - J Z H Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China; New York University, New York, NY, United States.
| |
Collapse
|
49
|
Basom EJ, Maj M, Cho M, Thielges MC. Site-Specific Characterization of Cytochrome P450cam Conformations by Infrared Spectroscopy. Anal Chem 2016; 88:6598-606. [PMID: 27185328 DOI: 10.1021/acs.analchem.6b01520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conformational changes are central to protein function but challenging to characterize with both high spatial and temporal precision. The inherently fast time scale and small chromophores of infrared (IR) spectroscopy are well-suited for characterization of potentially rapidly fluctuating environments, and when frequency-resolved probes are incorporated to overcome spectral congestion, enable characterization of specific sites in proteins. We selectively incorporated p-cyanophenylalanine (CNF) as a vibrational probe at five distinct locations in the enzyme cytochrome P450cam and used IR spectroscopy to characterize the environments in substrate and/or ligand complexes reflecting those in the catalytic cycle. Molecular dynamics (MD) simulations were performed to provide a structural basis for spectral interpretation. Together the experimental and simulation data suggest that the CN frequencies are sensitive to both long-range influences, resulting from the particular location of a residue within the enzyme, as well as short-range influences from hydrogen bonding and packing interactions. The IR spectra demonstrate that the environments and effects of substrate and/or ligand binding are different at each position probed and also provide evidence that a single site can experience multiple environments. This study illustrates how IR spectroscopy, when combined with the spectral decongestion and spatial selectivity afforded by CNF incorporation, provides detailed information about protein structural changes that underlie function.
Collapse
Affiliation(s)
- Edward J Basom
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - Michał Maj
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University , Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University , Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| |
Collapse
|
50
|
Deb P, Haldar T, Kashid SM, Banerjee S, Chakrabarty S, Bagchi S. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins. J Phys Chem B 2016; 120:4034-46. [DOI: 10.1021/acs.jpcb.6b02732] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pranab Deb
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Somnath M Kashid
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Subhrashis Banerjee
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|