1
|
Vu K, Pandian J, Zhang B, Annas C, Parker AJ, Mancini JS, Wang EB, Saldana-Greco D, Nelson ES, Springsted G, Lischka H, Plasser F, Parish CA. Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Study of the Geometries and Energies for ortho-, meta- and para-Benzyne. J Phys Chem A 2024; 128:7816-7829. [PMID: 39240216 PMCID: PMC11421082 DOI: 10.1021/acs.jpca.4c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
The diradical benzyne isomers are excellent prototypes for evaluating the ability of an electronic structure method to describe static and dynamic correlation. The benzyne isomers are also interesting molecules with which to study the fundamentals of through-space and through-bond diradical coupling that is important in so many electronic device applications. In the current study, we utilize the multireference methods MC-SCF, MR-CISD, MR-CISD+Q, and MR-AQCC with an (8,8) complete active space that includes the σ, σ*, π and π* orbitals, to characterize the electronic structure of ortho-, meta- and para-benzyne. We also determine the adiabatic and vertical singlet-triplet splittings for these isomers. MR-AQCC and MR-CISD+Q produced energy gaps in good agreement with previously obtained experimental values. Geometries, orbital energies and unpaired electron densities show significant through-space coupling in the o- and m-benzynes, while p-benzyne shows through-bond coupling, explaining the dramatically different singlet-triplet gaps between the three isomers.
Collapse
Affiliation(s)
- Khanh Vu
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Joshua Pandian
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Boyi Zhang
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Christina Annas
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Anna J. Parker
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - John S. Mancini
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Evan B. Wang
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Diomedes Saldana-Greco
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Emily S. Nelson
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Greg Springsted
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, Ashby Road, Loughborough LE11 3TU, Leicestershire, U.K.
| | - Carol A. Parish
- Department
of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
2
|
Feldmann R, Reiher M. Renormalized Internally Contracted Multireference Coupled Cluster with Perturbative Triples. J Chem Theory Comput 2024; 20. [PMID: 39158160 PMCID: PMC11360144 DOI: 10.1021/acs.jctc.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
In this work, we combine the many-body formulation of the internally contracted multireference coupled cluster (ic-MRCC) method with Evangelista's multireference formulation of the driven similarity renormalization group (DSRG). The DSRG method can be viewed as a unitary multireference coupled cluster theory, which renormalizes the amplitudes based on a flow equation approach to eliminate numerical instabilities. We extend this approach by demonstrating that the unitary flow equation approach can be adapted for nonunitary transformations, rationalizing the renormalization of ic-MRCC amplitudes. We denote the new approach, the renormalized ic-MRCC (ric-MRCC) method. To achieve high accuracy with a reasonable computational cost, we introduce a new approximation to the Baker-Campbell-Hausdorff expansion. We fully consider the linear commutator while approximating the quadratic commutator, for which we neglect specific contractions involving amplitudes with active indices. Moreover, we introduce approximate perturbative triples to obtain the ric-MRCCSD[T] method. We demonstrate the accuracy of our approaches in comparison to advanced multireference methods for the potential energy curves of H8, F2, H2O, N2, and Cr2. Additionally, we show that ric-MRCCSD and ric-MRCSSD[T] match the accuracy of CCSD(T) for evaluating spectroscopic constants and of full configuration interaction energies for a set of small molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Department of Chemistry and
Applied Biosciences, ETH Zürich,, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
de Moraes MMF, Tecmer P. Towards reliable and efficient modeling of [Cu 2O 2] 2+-based compound electronic structures with the partially fixed reference space protocols. Phys Chem Chem Phys 2024; 26:19742-19754. [PMID: 38984390 DOI: 10.1039/d4cp01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
This work reports a computationally efficient approach for reliable modeling of complex electronic structures based on [Cu2O2]2+ moieties. Specifically, we explore the recently developed partially fixed reference space (PFRS) protocol to minimize the active space size, taking into account the double d-shell effects. We show that the ground-state electronic structure of the core [Cu2O2]2+ model system is dominated by the d9/d10 occupations. The PFRS-crafted active spaces are further used to generate the reference wave functions for the multi-reference coupled cluster, configuration interaction, and multi-reference perturbation theory calculations. Specifically, we demonstrate that the bare [Cu2O2]2+ core can be modeled qualitatively using active spaces as small as CAS(2,2)PFRS. To obtain quantitative agreement with the reference DMRG(32,62)CI calculations, the CAS(4,4) has to be used in conjunction with the MRCCSD correction on top of it. This reliable and computationally efficient protocol is further used to model the electronic structure and properties of ammonia coordinated [Cu2O2]2+ complexes. Finally, based on the large amount of available experimental data regarding the oxo-peroxo equilibrium of [Cu2O2]2+-based systems, it is possible to formulate educated guesses regarding the effect of each experimental variable over each d-occupancy-specific state. With a large sample size of d-occupancy-specific state dependence with ligands and solvents, it should be possible to propose new ligands with specific d-occupancy and, therefore, oxidative properties based on the d-occupancy energy gaps of relatively low-cost calculations.
Collapse
Affiliation(s)
- Matheus Morato F de Moraes
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Paweł Tecmer
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Zhao Z, Evangelista FA. Toward Accurate Spin-Orbit Splittings from Relativistic Multireference Electronic Structure Theory. J Phys Chem Lett 2024; 15:7103-7110. [PMID: 38954768 PMCID: PMC11261625 DOI: 10.1021/acs.jpclett.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Most nonrelativistic electron correlation methods can be adapted to account for relativistic effects, as long as the relativistic molecular spinor integrals are available, from either a four-, two-, or one-component mean-field calculation. However, relativistic multireference correlation methods remain a relatively unexplored area, with mixed evidence regarding the improvements brought by perturbative treatments. We report, for the first time, the implementation of state-averaged four-component relativistic multireference perturbation theories to second and third order based on the driven similarity renormalization group (DSRG). With our methods, named 4c-SA-DSRG-MRPT2 and 3, we find that the dynamical correlation included on top of 4c-CASSCF references can significantly improve the spin-orbit splittings in p-block elements and potential energy surfaces when compared to 4c-CASSCF and 4c-CASPT2 results. We further show that 4c-DSRG-MRPT2 and 3 are applicable to these systems over a wide range of the flow parameter, with systematic improvement from second to third order in terms of both improved error statistics and reduced sensitivity with respect to the flow parameter.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
de Moura CEV, Sokolov AY. Efficient Spin-Adapted Implementation of Multireference Algebraic Diagrammatic Construction Theory. I. Core-Ionized States and X-ray Photoelectron Spectra. J Phys Chem A 2024; 128:5816-5831. [PMID: 38962857 DOI: 10.1021/acs.jpca.4c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We present an efficient implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulating core-ionized states and X-ray photoelectron spectra (XPS). Taking advantage of spin adaptation, automatic code generation, and density fitting, our implementation can perform calculations for molecules with more than 1500 molecular orbitals, incorporating static and dynamic correlation in the ground and excited electronic states. We demonstrate the capabilities of MR-ADC methods by simulating the XPS spectra of substituted ferrocene complexes and azobenzene isomers. For the ground electronic states of these molecules, the XPS spectra computed using the extended second-order MR-ADC method (MR-ADC(2)-X) are in a very good agreement with available experimental results. We further show that MR-ADC can be used as a tool for interpreting or predicting the results of time-resolved XPS measurements by simulating the core ionization spectra of azobenzene along its photoisomerization, including the XPS signatures of excited states and the minimum energy conical intersection. This work is the first in a series of publications reporting the efficient implementations of MR-ADC methods.
Collapse
Affiliation(s)
- Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Lechner MH, Papadopoulos A, Sivalingam K, Auer AA, Koslowski A, Becker U, Wennmohs F, Neese F. Code generation in ORCA: progress, efficiency and tight integration. Phys Chem Chem Phys 2024; 26:15205-15220. [PMID: 38767596 DOI: 10.1039/d4cp00444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An improved version of ORCA's automated generator environment (ORCA-AGE II) is presented. The algorithmic improvements and the move to C++ as the programming language lead to a performance gain of up to two orders of magnitude compared to the previously developed PYTHON toolchain. Additionally, the restructured modular design allows for far more complex code engines to be implemented readily. Importantly, we have realised an extremely tight integration with the ORCA host program. This allows for a workflow in which only the wavefunction Ansatz is part of the source code repository while all actual high-level code is generated automatically, inserted at the appropriate place in the host program before it is compiled and linked together with the hand written code parts. This construction ensures longevity and uniform code quality. Furthermore the new developments allow ORCA-AGE II to generate parallelised production-level code for highly complex theories, such as fully internally contracted multireference coupled-cluster theory (fic-MRCC) with an enormous number of contributing tensor contractions. We also discuss the automated implementation of nuclear gradients for arbitrary theories. All these improvements enable the implementation of theories that are too complex for the human mind and also reduce development times by orders of magnitude. We hope that this work enables researchers to concentrate on the intellectual content of the theories they develop rather than be concerned with technical details of the implementation.
Collapse
Affiliation(s)
- Marvin H Lechner
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Anastasios Papadopoulos
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Kantharuban Sivalingam
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Alexander A Auer
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Axel Koslowski
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Ute Becker
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Wennmohs
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
7
|
Li C, Mao S, Huang R, Evangelista FA. Frozen Natural Orbitals for the State-Averaged Driven Similarity Renormalization Group. J Chem Theory Comput 2024; 20:4170-4181. [PMID: 38747709 DOI: 10.1021/acs.jctc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We present a reduced-cost implementation of the state-averaged driven similarity renormalization group (SA-DSRG) based on the frozen natural orbital (FNO) approach. The natural orbitals (NOs) are obtained by diagonalizing the one-body reduced density matrix from SA-DSRG second-order perturbation theory (SA-DSRG-PT2). We consider three criteria to truncate the virtual NOs for the subsequent electron correlation treatment beyond SA-DSRG-PT2. An additive second-order correction is applied to the SA-DSRG Hamiltonian to reintroduce correlation effects from the discarded orbitals. The FNO SA-DSRG method is benchmarked on 35 small organic molecules in the QUEST database. When keeping 98-99% of the cumulative occupation numbers, the mean absolute error in the vertical transition energies due to FNO is less than 0.01 eV. Using the same FNO threshold, we observe a speedup of 9 times compared to the conventional SA-DSRG implementation for nickel carbonyl with a quadruple-ζ basis set. The FNO approach enables nonperturbative SA-DSRG computations on chloroiron corrole [FeCl(C19H11N4)] with more than 1000 basis functions, surpassing the current limit of a conventional implementation.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuxian Mao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renke Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Tuckman H, Neuscamman E. Aufbau Suppressed Coupled Cluster Theory for Electronically Excited States. J Chem Theory Comput 2024; 20:2761-2773. [PMID: 38502102 DOI: 10.1021/acs.jctc.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We introduce an approach to improve single-reference coupled cluster theory in settings where the Aufbau determinant is absent from or plays only a small role in the true wave function. Using a de-excitation operator that can be efficiently hidden within a similarity transform, we create a coupled cluster wave function in which de-excitations work to suppress the Aufbau determinant and produce wave functions dominated by other determinants. Thanks to an invertible and fully exponential form, the approach is systematically improvable, size consistent, size extensive, and, interestingly, size intensive in a granular way that should make the adoption of some ground state techniques, such as local correlation, relatively straightforward. In this initial study, we apply the general formalism to create a state-specific method for orbital-relaxed, singly excited states. We find that this approach matches the accuracy of similar-cost equation-of-motion methods in valence excitations while offering improved accuracy for charge transfer states. We also find the approach to be more accurate than excited-state-specific perturbation theory in both types of states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Zielinski P, Black JA, Köhn A. Performance Tests of the Second-Order Approximate Internally Contracted Multireference Coupled-Cluster Singles and Doubles Method icMRCC2. J Chem Theory Comput 2023; 19:8671-8688. [PMID: 37991987 PMCID: PMC10720349 DOI: 10.1021/acs.jctc.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Benchmark results are presented for the second-order approximation of the internally contracted multireference coupled-cluster method with single and double excitations, icMRCC2 [Köhn, Bargholz, J. Chem. Phys. 2019, 151, 041106], which was designed as a multireference analogue of the single-reference second-order approximate coupled-cluster method CC2 [Christiansen, Koch, Jørgensen, Chem. Phys. Lett. 1995, 243, 409-418]. Vertical excitation energies of various small to medium-sized organic molecules are investigated based on established test sets from the literature. Additionally, the spectroscopic constants of ground and excited states of diatomics and the geometric parameters of excited triatomic molecules were determined and compared to the experimental data. The results show that the method clearly extends the applicability of single-reference CC2, including doubly excited states, and also artifacts of CC2 like too low Rydberg excitations and too weak multiple bonds are eliminated. The method is computationally more demanding than standard multireference second-order perturbation theories but improves significantly in accuracy, as shown by the benchmark results. In addition, it is demonstrated that small active spaces are often sufficient to obtain accurate energies with icMRCC2. Example applications like the automerization of cyclobutadiene, the deactivation pathway of ethylene, and the excited states of an iron complex with a noninnocent nitrosyl ligand demonstrate the potential of icMRCC2 in cases with strong multireference character.
Collapse
Affiliation(s)
- Patrik Zielinski
- Institute for Theoretical
Chemistry, University of Stuttgart, Paffenwaldring 55, Stuttgart D-70569, Germany
| | | | - Andreas Köhn
- Institute for Theoretical
Chemistry, University of Stuttgart, Paffenwaldring 55, Stuttgart D-70569, Germany
| |
Collapse
|
10
|
Chakravarti D, Sen S, Mukherjee D. A systematic improvement to UGA-SSMRCCSD equations and its implication for potential energy curves. J Chem Phys 2023; 159:134102. [PMID: 37787129 DOI: 10.1063/5.0168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
The Unitary Group Adaptation (UGA) offers a very compact and efficient spin adaptation strategy for any spin-free Hamiltonian in a many body framework. Our use of UGA in the context of state-specific (SS) Jeziorski-Monkhorst Ansatz based multireference coupled cluster (MRCC) theory obviates the non-commutativity between the spin-free cluster operators via a normal ordered exponential parametrization in the wave operator. A previous formulation of UGA-SSMRCC by us [R. Maitra, D. Sinha, and D. Mukherjee, J. Chem. Phys. 137, 024105 (2012)], using the same ansatz, employed certain sufficiency conditions to reach the final working equations, which cannot be improved systematically. In this article, we will present a more rigorous formulation that follows from an exact factorization of the unlinked terms of the Bloch equation, resulting in equations on which a hierarchy of approximations can be systematically performed on the emergent additional terms. This derivation was shown in our recent article [D. Chakravarti, S. Sen, and D. Mukherjee, Mol. Phys. 119, e1979676 (2021)] in the context of a single open shell CC formalism and was applied to spectroscopic energy differences where the contribution of the new terms was found to be of the order of ∼0.001 eV for ionization potential, electron affinity, and excitation energy. In the current work, we will present a comparison between the earlier and current formulations via both a theoretical analysis and a numerical demonstration of the dramatic effect of the additional terms brought in by the factorization on potential energy curves. The contribution of such terms was found to gain importance with an increase in the number of singly occupied active orbitals in the model space functions.
Collapse
Affiliation(s)
- Dibyajyoti Chakravarti
- Centre for Quantum Engineering, Research, and Education (CQuERE), TCG CREST, Kolkata, India
| | - Sangita Sen
- Department of Chemical Sciences, Indian Institute of Science, Education and Research, Kolkata, India
| | - Debashis Mukherjee
- Centre for Quantum Engineering, Research, and Education (CQuERE), TCG CREST, Kolkata, India
| |
Collapse
|
11
|
Tuckman H, Neuscamman E. Excited-State-Specific Pseudoprojected Coupled-Cluster Theory. J Chem Theory Comput 2023; 19:6160-6171. [PMID: 37676752 DOI: 10.1021/acs.jctc.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We present an excited-state-specific coupled-cluster approach in which both the molecular orbitals and cluster amplitudes are optimized for an individual excited state. The theory is formulated via a pseudoprojection of the traditional coupled-cluster wavefunction that allows correlation effects to be introduced atop an excited-state mean field starting point. The approach shares much in common with ground-state CCSD, including size extensivity and an N6 cost scaling. Preliminary numerical tests show that, when augmented with N5 cost perturbative corrections for key terms, the method can improve over excited-state-specific second-order perturbation theory in valence, charge transfer, and Rydberg states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Wang M, Fang WH, Li C. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases. J Chem Theory Comput 2023; 19:122-136. [PMID: 36534617 DOI: 10.1021/acs.jctc.2c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a comprehensive excited-state benchmark for the state-averaged (SA) driven similarity renormalization group (DSRG) [Li, C.; Evangelista, F. A. J. Chem. Phys. 2018, 148, 124106]. Following the QUEST database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; Loos, P.-F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1517], 280 vertical transition energies of 35 medium-sized molecules are computed using the SA-DSRG derived second- and third-order perturbation theories (PT2/PT3) along with a nonperturbative approach [sq-LDSRG(2)]. Comparing to the theoretical best estimates, the optimal flow parameter is found to be 0.35 and 2.0 Eh-2 for SA-DSRG-PT2 and SA-DSRG-PT3, respectively. For SA-sq-LDSRG(2), a flow parameter of 1.5 Eh-2 provides converged equations without compromising the accuracy. We then assess the accuracy of the SA-DSRG hierarchy using these parameters. The SA-DSRG-PT2 scheme outperforms the level-shifted CASPT2 by 0.10 eV in mean absolute error (MAE), yet this accuracy is slightly inferior than that of CASPT2 with the ionization-potential-electron-affinity shift. Both SA-DSRG-PT3 and SA-sq-LDSRG(2) yield a MAE of 0.10 eV, which is comparable to that of CASPT3 (0.09 eV). Finally, we compute vertical excitation energies of several low-lying singlet states of nucleobases. The SA-sq-LDSRG(2) approach provides highly accurate results for π → π* excitations, while n → π* transitions are better described by SA-DSRG-PT3.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Izsák R. Second quantisation for unrestricted references: formalism and quasi-spin-adaptation of excitation and spin-flip operators. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Köhn A, Olsen J. Capabilities and Limits of the Unitary Coupled-cluster Approach with Generalized Two-body Cluster Operators. J Chem Phys 2022; 157:124110. [DOI: 10.1063/5.0104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unitary cluster expansions of the electronic wavefunction have recently gained much interest because of their use in conjunction with quantum algorithms. In this contribution, we investigate some aspects of an ansatz using generalized two-body excitations operators, which has been considered in some recent works on quantum algorithms for quantum chemistry. Our numerical results show that in particular two-body operators with effective particle-hole excitation level of one in connection with the usual particle-hole double excitation operators lead to a very accurate yet compact representation of the wavefunction. Generalized two-body operators with effective excitation rank zero have a considerably less pronounced effect. We compare to standard and unitary coupled-cluster expansions and show that the above mentioned approach matches or even surpasses the accuracy of expansions with three-body particle-hole excitations, in particular at the onset of strong correlation. A downside of the approach is that it is rather difficult to rigorously converge it to its variational minimum.
Collapse
Affiliation(s)
- Andreas Köhn
- Institute of Theoretical Chemistry, University of Stuttgart, Germany
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University Department of Chemistry, Denmark
| |
Collapse
|
15
|
Evangelista FA. Automatic derivation of many-body theories based on general Fermi vacua. J Chem Phys 2022; 157:064111. [PMID: 35963725 DOI: 10.1063/5.0097858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper describes Wick&d, an implementation of the algebra of second-quantized operators normal ordered with respect to general correlated references and the corresponding Wick theorem [D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997) and W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997)]. Wick&d employs a compact representation of operators and a backtracking algorithm to efficiently evaluate Wick contractions. Since Wick&d can handle both fully and partially contracted terms, it can be applied to both projective and Fock-space many-body formalisms. To demonstrate the usefulness of Wick&d, we use it to evaluate the single-reference coupled cluster equations up to octuple excitations and report an automated derivation and implementation of the second-order driven similarity renormalization group multireference perturbation theory.
Collapse
Affiliation(s)
- Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Helmich-Paris B. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J Chem Phys 2022; 156:204104. [DOI: 10.1063/5.0090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we present a one-step second-order converger for state-specific (SS) and state-averaged (SA) complete active space self-consistent field (CASSCF) wave functions. Robust convergence is achieved through step restrictions using a trust-region augmented Hessian (TRAH) algorithm. To avoid numerical instabilities, an exponential parameterization of variational configuration parameters is employed, which works with a nonredundant orthogonal complement basis. This is a common approach for SS-CASSCF and is extended to SA-CASSCF wave functions in this work. Our implementation is integral direct and based on intermediates that are formulated in either the sparse atomic-orbital or small active molecular-orbital basis. Thus, it benefits from a combination with efficient integral decomposition techniques, such as the resolution-of-the-identity or the chain-of-spheres for exchange approximations. This facilitates calculations on large molecules, such as a Ni(II) complex with 231 atoms and 5154 basis functions. The runtime performance of TRAH-CASSCF is competitive with the other state-of-the-art implementations of approximate and full second-order algorithms. In comparison with a sophisticated first-order converger, TRAH-CASSCF calculations usually take more iterations to reach convergence and, thus, have longer runtimes. However, TRAH-CASSCF calculations still converge reliably to a true minimum even if the first-order algorithm fails.
Collapse
Affiliation(s)
- Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Christlmaier EM, Kats D, Alavi A, Usvyat D. Full Configuration Interaction Quantum Monte Carlo treatment of fragments embedded in a periodic mean field. J Chem Phys 2022; 156:154107. [DOI: 10.1063/5.0084040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an embedded fragment approach for high-level quantum chemical calculations on local features in periodic systems. The fragment is defined as a set of localized orbitals (occupied and virtual) corresponding to a converged periodic Hartree-Fock solution. These orbitals serve as the basis for the in-fragment post-Hartree Fock treatment. The embedding field for the fragment, consisting of the Coulomb and exchange potential from the rest of the crystal, is included in the fragment's one-electron Hamiltonian. As an application of the embedded fragment approach we investigate the performanceof full configuration interaction quantum Monte Carlo (FCIQMC) with the adaptive shift. As the orbital choice we use the natural orbitals from the distinguishable cluster method with singles and doubles. FCIQMC is a stochastic approximation to the full CI method and can be routinely applied to much larger active spaces than the latter. This makes this method especially attractive in the context of open shell defects in crystals, where fragments of adequate size can be ratherlarge. As a test case we consider dissociation of a fluorine atom from a fluorographane surface. This process poses a challenge for high-level electronic structure models as both the static and dynamic correlations are essential here. Furthermore the active space for an adequate fragment (32 electrons in 173 orbitals) is already quite large even for FCIQMC. Despite this, FCIQMC delivers accurate dissociation and total energies.
Collapse
Affiliation(s)
| | - Daniel Kats
- Max-Planck-Institute for Solid State Research, Germany
| | - Ali Alavi
- Max-Planck-Institute for Solid State Research, Germany
| | - Denis Usvyat
- Institute of Chemistry, Humboldt University of Berlin, Germany
| |
Collapse
|
18
|
Kollmar C, Sivalingam K, Guo Y, Neese F. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J Chem Phys 2021; 155:234104. [PMID: 34937355 DOI: 10.1063/5.0072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their evaluation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration interaction solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indicate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or stability.
Collapse
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Waigum A, Black JA, Köhn A. A generalized hybrid scheme for multireference methods. J Chem Phys 2021; 155:204106. [PMID: 34852483 DOI: 10.1063/5.0067511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A generalization of the hybrid scheme for multireference methods as recently put forward by Saitow and Yanai [J. Chem. Phys. 152, 114 111 (2020)] is presented. The hybrid methods are constructed by defining internal and external excitation spaces and evaluating these two subsets of excitations at different levels of theory. New hybrids that use the mix of internally contracted multireference coupled-cluster, unshifted multireference coupled electron pair, and multireference perturbation methods are derived and benchmarked. A new separation of the excitation space, which combines all singles and doubles excitations to the virtual orbitals into the external space, is also presented and tested. In general, the hybrid methods improve upon their non-hybrid parent method and offer a good compromise between computational complexity and numerical accuracy.
Collapse
Affiliation(s)
- A Waigum
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - J A Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - A Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
20
|
Nottoli T, Gauss J, Lipparini F. Second-Order CASSCF Algorithm with the Cholesky Decomposition of the Two-Electron Integrals. J Chem Theory Comput 2021; 17:6819-6831. [PMID: 34719925 PMCID: PMC8582256 DOI: 10.1021/acs.jctc.1c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In this contribution,
we present the implementation of a second-order
complete active space–self-consistent field (CASSCF) algorithm
in conjunction with the Cholesky decomposition of the two-electron
repulsion integrals. The algorithm, called norm-extended optimization,
guarantees convergence of the optimization, but it involves the full
Hessian and is therefore computationally expensive. Coupling the second-order
procedure with the Cholesky decomposition leads to a significant reduction
in the computational cost, reduced memory requirements, and an improved
parallel performance. As a result, CASSCF calculations of larger molecular
systems become possible as a routine task. The performance of the
new implementation is illustrated by means of benchmark calculations
on molecules of increasing size, with up to about 3000 basis functions
and 14 active orbitals.
Collapse
Affiliation(s)
- Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa. Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa. Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
21
|
Li C, Evangelista FA. Spin-free formulation of the multireference driven similarity renormalization group: A benchmark study of first-row diatomic molecules and spin-crossover energetics. J Chem Phys 2021; 155:114111. [PMID: 34551530 DOI: 10.1063/5.0059362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a spin-free formulation of the multireference (MR) driven similarity renormalization group (DSRG) based on the ensemble normal ordering of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. This ensemble averages over all microstates of a given total spin quantum number, and therefore, it is invariant with respect to SU(2) transformations. As such, all equations may be reformulated in terms of spin-free quantities and they closely resemble those of spin-adapted closed-shell coupled cluster (CC) theory. The current implementation is used to assess the accuracy of various truncated MR-DSRG methods (perturbation theory up to third order and iterative methods with single and double excitations) in computing the constants of 33 first-row diatomic molecules. The accuracy trends for these first-row diatomics are consistent with our previous benchmark on a small subset of closed-shell diatomic molecules. We then present the first MR-DSRG application on transition-metal complexes by computing the spin splittings of the [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules. A focal point analysis (FPA) shows that third-order perturbative corrections are essential to achieve reasonably converged energetics. The FPA based on the linearized MR-DSRG theory with one- and two-body operators and up to a quintuple-ζ basis set predicts the spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ to be -35.7 and -17.1 kcal mol-1, respectively, showing good agreement with the results of local CC theory with singles, doubles, and perturbative triples.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
22
|
Affiliation(s)
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
23
|
Chakravarti D, Hazra K, Kayal R, Sasmal S, Mukherjee D. Exploration of interlacing and avoided crossings in a manifold of potential energy curves by a unitary group adapted state specific multi-reference perturbation theory (UGA-SSMRPT). J Chem Phys 2021; 155:014101. [PMID: 34241385 DOI: 10.1063/5.0054731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Unitary Group Adapted State-Specific Multi-Reference Perturbation Theory (UGA-SSMRPT2) developed by Mukherjee et al. [J. Comput. Chem. 36, 670 (2015)] has successfully realized the goal of studying bond dissociation in a numerically stable, spin-preserving, and size-consistent manner. We explore and analyze here the efficacy of the UGA-SSMRPT2 theory in the description of the avoided crossings and interlacings between a manifold of potential energy curves for states belonging to the same space-spin symmetry. Three different aspects of UGA-SSMRPT2 have been studied: (a) We introduce and develop the most rigorous version of UGA-SSMRPT2 that emerges from the rigorous version of UGA-SSMRCC utilizing a linearly independent virtual manifold; we call this the "projection" version of UGA-SSMRPT2 (UGA-SSMRPT2 scheme P). We compare and contrast this approach with our earlier formulation that used extra sufficiency conditions via amplitude equations (UGA-SSMRPT2 scheme A). (b) We present the results for a variety of electronic states of a set of molecules, which display the striking accuracy of both the two versions of UGA-SSMRPT2 with respect to three different situations involving weakly avoided crossings, moderate/strongly avoided crossings, and interlacing in a manifold of potential energy curves (PECs) of the same symmetry. Accuracy of our results has been benchmarked against IC-MRCISD + Q.
Collapse
Affiliation(s)
- Dibyajyoti Chakravarti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Koustav Hazra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Riya Kayal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Sudip Sasmal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany
| | - Debashis Mukherjee
- Centre for Quantum Engineering, Research, and Education (CQuERE), TCG-CREST, Kolkata, India
| |
Collapse
|
24
|
Haldar S, Dutta AK. An efficient Fock space multi-reference coupled cluster method based on natural orbitals: Theory, implementation, and benchmark. J Chem Phys 2021; 155:014105. [PMID: 34241374 DOI: 10.1063/5.0054171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a natural orbital-based implementation of the intermediate Hamiltonian Fock space coupled-cluster method for the (1, 1) sector of Fock space. The use of natural orbitals significantly reduces the computational cost and can automatically choose an appropriate set of active orbitals. The new method retains the charge transfer separability of the original intermediate Hamiltonian Fock space coupled-cluster method and gives excellent performance for valence, Rydberg, and charge-transfer excited states. It offers significant computational advantages over the popular equation of motion coupled cluster method for excited states dominated by single excitations.
Collapse
Affiliation(s)
- Soumi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Mörchen M, Freitag L, Reiher M. Tailored coupled cluster theory in varying correlation regimes. J Chem Phys 2020; 153:244113. [PMID: 33380106 DOI: 10.1063/5.0032661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The tailored coupled cluster (TCC) approach is a promising ansatz that preserves the simplicity of single-reference coupled cluster theory while incorporating a multi-reference wave function through amplitudes obtained from a preceding multi-configurational calculation. Here, we present a detailed analysis of the TCC wave function based on model systems, which require an accurate description of both static and dynamic correlation. We investigate the reliability of the TCC approach with respect to the exact wave function. In addition to the error in the electronic energy and standard coupled cluster diagnostics, we exploit the overlap of TCC and full configuration interaction wave functions as a quality measure. We critically review issues, such as the required size of the active space, size-consistency, symmetry breaking in the wave function, and the dependence of TCC on the reference wave function. We observe that possible errors caused by symmetry breaking can be mitigated by employing the determinant with the largest weight in the active space as reference for the TCC calculation. We find the TCC model to be promising in calculations with active orbital spaces which include all orbitals with a large single-orbital entropy, even if the active spaces become very large and then may require modern active-space approaches that are not restricted to comparatively small numbers of orbitals. Furthermore, utilizing large active spaces can improve on the TCC wave function approximation and reduce the size-consistency error because the presence of highly excited determinants affects the accuracy of the coefficients of low-excited determinants in the active space.
Collapse
Affiliation(s)
- Maximilian Mörchen
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Leon Freitag
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
26
|
Calvin JA, Peng C, Rishi V, Kumar A, Valeev EF. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem Rev 2020; 121:1203-1231. [DOI: 10.1021/acs.chemrev.0c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Justus A. Calvin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chong Peng
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Varun Rishi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ashutosh Kumar
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
27
|
Köhn A, Black JA, Aoto YA, Hanauer M. Improved and simplified orthogonalisation scheme and connected triples correction within the internally contracted multireference coupled-cluster method. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1743889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Stuttgart, Germany
| | - Joshua A. Black
- Institut für Theoretische Chemie, Universität Stuttgart, Stuttgart, Germany
| | - Yuri A. Aoto
- Center for Mathematics Computing and Cognition, Federal University of ABC (UFABC), Santo André, Brazil
| | - Matthias Hanauer
- Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Renningen, Germany
| |
Collapse
|
28
|
Lin HH, Maschio L, Kats D, Usvyat D, Heine T. Fragment-Based Restricted Active Space Configuration Interaction with Second-Order Corrections Embedded in Periodic Hartree–Fock Wave Function. J Chem Theory Comput 2020; 16:7100-7108. [DOI: 10.1021/acs.jctc.0c00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hung-Hsuan Lin
- Theoretische Chemie, Technische Universität Dresden, Dresden, Germany
| | - Lorenzo Maschio
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Daniel Kats
- Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
| | - Denis Usvyat
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Heine
- Theoretische Chemie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
29
|
Lahm ME, Maynard RK, Turney JM, Weinhold F, Schaefer HF. Substituted Ortho-Benzynes: Properties of the Triple Bond. J Org Chem 2020; 85:9905-9914. [PMID: 32614582 DOI: 10.1021/acs.joc.0c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ortho-benzyne has been well studied by both experiment and theory. Its substituted variants, however, have been less carefully examined. Benchmark data are computed for unsubstituted ortho-benzyne using several density functional theory functionals and basis sets, up to cc-pVQZ. Optimized geometries for the substituted ortho-benzyne as well as harmonic vibrational frequencies and singlet-triplet splittings are computed using the benchmarked functionals. A proximal (syn)OH substitution causes a mean θ1 distortion of +8.1 ± 1.4° from ortho-benzyne. Substituting in the proximal position with F shifts the singlet-triplet splitting by +4.5 ± 0.4 kcal mol-1 from ortho-benzyne. Natural bond orbital analysis, including natural Coulomb electrostatics, elucidates the presence of three influences from the selected substituents: hyperconjugative, resonance, and electrostatic effects.
Collapse
Affiliation(s)
- Mitchell E Lahm
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan K Maynard
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Frank Weinhold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Bodenstein T, Kvaal S. A state-specific multireference coupled-cluster method based on the bivariational principle. J Chem Phys 2020; 153:024106. [PMID: 32668937 DOI: 10.1063/5.0009429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A state-specific multireference coupled-cluster (MRCC) method based on Arponen's bivariational principle is presented, the bivar-MRCC method. The method is based on single-reference theory and therefore has a relatively straightforward formulation and modest computational complexity. The main difference from established methods is the bivariational formulation, in which independent parameterizations of the wave function (ket) and its complex conjugate (bra) are made. Importantly, this allows manifest multiplicative separability of the state (exact in the extended bivar-MRECC version of the method and approximate otherwise), and additive separability of the energy, while preserving polynomial scaling of the working equations. A feature of the bivariational principle is that the formal bra and ket references can be included as bivariational parameters, which eliminates much of the bias toward the formal reference. A pilot implementation is described, and extensive benchmark calculations on several standard problems are performed. The results from the bivar-MRCC method are comparable to established state-specific multireference methods. Considering the relative affordability of the bivar-MRCC method, it may become a practical tool for non-experts.
Collapse
Affiliation(s)
- Tilmann Bodenstein
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
31
|
Maradzike E, Hapka M, Pernal K, DePrince AE. Reduced Density Matrix-Driven Complete Active Apace Self-Consistent Field Corrected for Dynamic Correlation from the Adiabatic Connection. J Chem Theory Comput 2020; 16:4351-4360. [PMID: 32538086 DOI: 10.1021/acs.jctc.0c00324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recently proposed multireference adiabatic connection (AC) formalism [Pernal, Phys. Rev. Lett. 120, 013001 (2018)] is applied to recover dynamic electron correlation effects lacking in variational two-electron reduced density matrix (v2RDM)-driven complete active space self-consistent field theory (CASSCF). The AC approach is validated by computing potential energy curves for the dissociation of molecular nitrogen and the symmetric double dissociation of H2O while enforcing two sets of approximate N-representability conditions in the underlying v2RDM-driven CASSCF calculations (either two-particle or two-particle plus partial three-particle conditions). The AC yields smaller absolute errors than second-order N-electron perturbation theory (NEVPT2) at all molecular geometries for both sets of the N-representability conditions considered. The efficacy of the approach for thermochemistry is also assessed for a set of 31 small-molecule reactions. When imposing partial three-particle N-representability conditions, mean and maximum unsigned errors in reaction energies from the AC are superior to those from NEVPT2.
Collapse
Affiliation(s)
- Elvis Maradzike
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
32
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 697] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
33
|
Kollmar C, Sivalingam K, Neese F. An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. J Chem Phys 2020; 152:214110. [DOI: 10.1063/5.0010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
34
|
Matthews DA, Cheng L, Harding ME, Lipparini F, Stopkowicz S, Jagau TC, Szalay PG, Gauss J, Stanton JF. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J Chem Phys 2020; 152:214108. [DOI: 10.1063/5.0004837] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael E. Harding
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, D-76131 Karlsruhe, Germany
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stella Stopkowicz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Thomas-C. Jagau
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - John F. Stanton
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
35
|
Margócsy Á, Szabados Á. Ring coupled cluster doubles at the multireference level. J Chem Phys 2020; 152:204114. [PMID: 32486660 DOI: 10.1063/5.0005075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A ring approximation within an internally contracted multireference (MR) Coupled Cluster (CC) framework is worked out and tested. Derivation of equations utilizes MR based, generalized normal ordering and the corresponding generalized Wick-theorem (MR-GWT). Contractions among cluster operators are avoided by adopting a normal ordered exponential ansatz. The original version of the MR ring CC doubles (MR-rCCD) equations [Á. Szabados and Á. Margócsy, Mol. Phys. 115, 2731 (2017)] is rectified in two aspects. On the one hand, over-completeness of double excitations is treated by relying on the concept of frames. On the other hand, restriction on the maximal cumulant rank is lifted from two to four. This is found essential for obtaining reliable correlation corrections to the energy. The MR function underlying the approach is provided by the Generalized Valence Bond (GVB) model. The pair structure of the reference ensures a fragment structure of GVB cumulants. This represents a benefit when evaluating cumulant contractions appearing as a consequence of MR-GWT. In particular, cumulant involving terms remain less expensive than their traditional, pair-contracted counterpart, facilitating an O(N6) eventual scaling of the proposed MR-rCCD method. Pilot applications are presented for covalent bond breaking, deprotonation energies, and torsional potentials.
Collapse
Affiliation(s)
- Á Margócsy
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Á Szabados
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
36
|
Werner HJ, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M. The Molpro quantum chemistry package. J Chem Phys 2020; 152:144107. [PMID: 32295355 DOI: 10.1063/5.0005081] [Citation(s) in RCA: 514] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joshua A Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Klaus Doll
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Heßelmann
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1 St., 02-093 Warsaw, Poland
| | - David A Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
37
|
Stein CJ, Reiher M. Semiclassical Dispersion Corrections Efficiently Improve Multiconfigurational Theory with Short-Range Density-Functional Dynamic Correlation. J Phys Chem A 2020; 124:2834-2841. [PMID: 32186877 DOI: 10.1021/acs.jpca.0c02130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multiconfigurational wave functions are known to describe the electronic structure across a Born-Oppenheimer surface qualitatively correct. However, for quantitative reaction energies, dynamic correlation originating from the many configurations involving excitations out of the restricted orbital space, the active space, must be considered. Standard procedures involve approximations that eventually limit the ultimate accuracy achievable (most prominently, multireference perturbation theory). At the same time, the computational cost increases dramatically due to the necessity to obtain higher-order reduced density matrices. It is this disproportion that leads us here to propose an MC-srDFT-D hybrid approach of semiclassical dispersion (D) corrections to cover long-range dynamic correlation in a multiconfigurational (MC) wave function theory, which includes short-range (sr) dynamic correlation by density functional theory (DFT) without double counting. We demonstrate that the reliability of this approach is very good (at negligible cost), especially when considering that standard second-order multireference perturbation theory usually overestimates dispersion interactions.
Collapse
Affiliation(s)
- Christopher J Stein
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
38
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
39
|
Reference spaces for multireference coupled-cluster theory: the challenge of the CoH molecule. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2584-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Süß D, Huber SE, Mauracher A. On the impact of multi-reference character of small transition metal compounds on their bond dissociation energies. J Chem Phys 2020; 152:114104. [DOI: 10.1063/1.5143495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel Süß
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Stefan E. Huber
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Andreas Mauracher
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
41
|
Saitow M, Yanai T. A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework. J Chem Phys 2020; 152:114111. [PMID: 32199413 DOI: 10.1063/1.5142622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Complete-Active Space Second-order Perturbation Theory (CASPT2) has been one of the most widely-used methods for reliably calculating electronic structures of multireference systems. Because of its lowest level treatment of dynamic correlation, it has a high computational feasibility; however, its accuracy in some cases falls short of needs. Here, as a simple yet higher-order alternative, we introduce a hybrid theory of the CASPT2 and a multireference variant of the Coupled-Electron Pair Approximation (CEPA), which is a class of high level correlation theory. A central feature of our theory (CEPT2) is to use the two underlying theories for describing different divisions of correlation components based on the full internal contraction framework. The external components, which usually give a major contribution to the dynamic correlation, are intensively described using the CEPA Ansatz, while the rests are treated at the CASPT2 level. Furthermore, to drastically reduce the computational demands, we have incorporated the pair-natural orbital (PNO) method into our multireference implementations. This development, thus, requires highly complex derivations and coding, while it has been largely facilitated with an automatic expression and code generation technique. To highlight the accuracy of the CEPT2 approach and to assess the errors caused by the PNO truncation, benchmark calculations are shown on small- to medium-size molecules, illustrating the high accuracy of the present CEPT2 model. By tightening the truncation thresholds, the PNO-CEPT2 energy converges toward the canonical counterpart and is more accurate than that of PNO-CASPT2 as long as the same truncation thresholds are used.
Collapse
Affiliation(s)
- Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
42
|
He N, Evangelista FA. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J Chem Phys 2020; 152:094107. [PMID: 33480706 DOI: 10.1063/1.5142481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multireference computations of large-scale chemical systems are typically limited by the computational cost of quantum chemistry methods. In this work, we develop a zeroth-order active space embedding theory [ASET(0)], a simple and automatic approach for embedding any multireference dynamical correlation method based on a frozen-orbital treatment of the environment. ASET(0) is combined with the second-order multireference driven similarity renormalization group and tested on several benchmark problems, including the excitation energy of 1-octene and bond-breaking in ethane and pentyldiazene. Finally, we apply ASET(0) to study the singlet-triplet gap of p-benzyne and 9,10-anthracyne diradicals adsorbed on a NaCl surface. Our results show that despite its simplicity, ASET(0) is a powerful and sufficiently accurate embedding scheme applicable when the coupling between the fragment and the environment is in the weak to medium regime.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry, Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
43
|
Chattopadhyay S. Investigation of Multiple-Bond Dissociation Using Brillouin–Wigner Perturbation with Improved Virtual Orbitals. J Phys Chem A 2020; 124:1444-1463. [DOI: 10.1021/acs.jpca.9b11522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
44
|
Bauman NP, Low GH, Kowalski K. Quantum simulations of excited states with active-space downfolded Hamiltonians. J Chem Phys 2019; 151:234114. [DOI: 10.1063/1.5128103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicholas P. Bauman
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | | | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
45
|
Tsuchimochi T, Ten-no SL. Second-Order Perturbation Theory with Spin-Symmetry-Projected Hartree–Fock. J Chem Theory Comput 2019; 15:6688-6702. [DOI: 10.1021/acs.jctc.9b00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Miyagawa K, Kawakami T, Suzuki Y, Isobe H, Shoji M, Yamanaka S, Okumura M, Nakajima T, Yamaguchi K. Domain-based local pair natural orbital CCSD(T) calculations of strongly correlated electron systems: Examination of dynamic equilibrium models based on multiple intermediates in S1 state of photosystem II. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1666171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- K. Miyagawa
- Institute for Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - T. Kawakami
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Y. Suzuki
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki 305-8577, Japan
| | - S. Yamanaka
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - M. Okumura
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - T. Nakajima
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - K. Yamaguchi
- Institute for Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
- Insitute for Nanoscience Design, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
47
|
Schieschke N, Bodenstein T, Höfener S. Frozen-density embedding employing configuration interaction as a subsystem method. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1665726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nils Schieschke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
48
|
Chatterjee K, Sokolov AY. Second-Order Multireference Algebraic Diagrammatic Construction Theory for Photoelectron Spectra of Strongly Correlated Systems. J Chem Theory Comput 2019; 15:5908-5924. [DOI: 10.1021/acs.jctc.9b00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koushik Chatterjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Zhang T, Li C, Evangelista FA. Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Transformation, Density Fitting, and the Noninteracting Virtual Orbital Approximation. J Chem Theory Comput 2019; 15:4399-4414. [PMID: 31268704 DOI: 10.1021/acs.jctc.9b00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examines several techniques to improve the efficiency of the linearized multireference driven similarity renormalization group truncated to one- and two-body operators [MR-LDSRG(2)]. We propose a sequential MR-LDSRG(2) [sq-MR-LDSRG(2)] scheme, in which one-body substitutions are folded exactly into the Hamiltonian. This new approach is combined with density fitting (DF) to reduce the storage cost of two-electron integrals. To further avoid storage of large four-index intermediates, we propose a noninteracting virtual orbital (NIVO) approximation of the Baker-Campbell-Hausdorff series that neglects commutators terms with three and four virtual indices. The NIVO approximation reduces the computational prefactor of the MR-LDSRG(2), bringing it closer to that of coupled cluster with singles and doubles (CCSD). We test the effect of the DF and NIVO approximations on the MR-LDSRG(2) and sq-MR-LDSRG(2) methods by computing properties of eight diatomic molecules. The diatomic constants obtained by DF-sq-MR-LDSRG(2)+NIVO are found to be as accurate as those from the original MR-LDSRG(2) and coupled cluster theory with singles, doubles, and perturbative triples. Finally, we demonstrate that the DF-sq-MR-LDSRG(2)+NIVO scheme can be applied to chemical systems with more than 550 basis functions by computing the automerization energy of cyclobutadiene with a quintuple-ζ basis set. The predicted automerization energy is found to be similar to the value computed with Mukherjee's state-specific multireference coupled cluster theory with singles and doubles.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
50
|
Köhn A, Bargholz A. The second-order approximate internally contracted multireference coupled-cluster singles and doubles method icMRCC2. J Chem Phys 2019; 151:041106. [DOI: 10.1063/1.5115045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Andreas Köhn
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Arne Bargholz
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|