1
|
Hayes RL, Cervantes LF, Abad Santos JC, Samadi A, Vilseck JZ, Brooks CL. How to Sample Dozens of Substitutions per Site with λ Dynamics. J Chem Theory Comput 2024; 20:6098-6110. [PMID: 38976796 PMCID: PMC11270746 DOI: 10.1021/acs.jctc.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Alchemical free energy methods are useful in computer-aided drug design and computational protein design because they provide rigorous statistical mechanics-based estimates of free energy differences from molecular dynamics simulations. λ dynamics is a free energy method with the ability to characterize combinatorial chemical spaces spanning thousands of related systems within a single simulation, which gives it a distinct advantage over other alchemical free energy methods that are mostly limited to pairwise comparisons. Recently developed methods have improved the scalability of λ dynamics to perturbations at many sites; however, the size of chemical space that can be explored at each individual site has previously been limited to fewer than ten substituents. As the number of substituents increases, the volume of alchemical space corresponding to nonphysical alchemical intermediates grows exponentially relative to the size corresponding to the physical states of interest. Beyond nine substituents, λ dynamics simulations become lost in an alchemical morass of intermediate states. In this work, we introduce new biasing potentials that circumvent excessive sampling of intermediate states by favoring sampling of physical end points relative to alchemical intermediates. Additionally, we present a more scalable adaptive landscape flattening algorithm for these larger alchemical spaces. Finally, we show that this potential enables more efficient sampling in both protein and drug design test systems with up to 24 substituents per site, enabling, for the first time, simultaneous simulation of all 20 amino acids.
Collapse
Affiliation(s)
- Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| | - Luis F. Cervantes
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Justin Cruz Abad Santos
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Amirmasoud Samadi
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jonah Z. Vilseck
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Champion C, Hünenberger PH, Riniker S. Multistate Method to Efficiently Account for Tautomerism and Protonation in Alchemical Free-Energy Calculations. J Chem Theory Comput 2024; 20:4350-4362. [PMID: 38742760 PMCID: PMC11137823 DOI: 10.1021/acs.jctc.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The majority of drug-like molecules contain at least one ionizable group, and many common drug scaffolds are subject to tautomeric equilibria. Thus, these compounds are found in a mixture of protonation and/or tautomeric states at physiological pH. Intrinsically, standard classical molecular dynamics (MD) simulations cannot describe such equilibria between states, which negatively impacts the prediction of key molecular properties in silico. Following the formalism described by de Oliveira and co-workers (J. Chem. Theory Comput. 2019, 15, 424-435) to consider the influence of all states on the binding process based on alchemical free-energy calculations, we demonstrate in this work that the multistate method replica-exchange enveloping distribution sampling (RE-EDS) is well suited to describe molecules with multiple protonation and/or tautomeric states in a single simulation. We apply our methodology to a series of eight inhibitors of factor Xa with two protonation states and a series of eight inhibitors of glycogen synthase kinase 3β (GSK3β) with two tautomeric states. In particular, we show that given a sufficient phase-space overlap between the states, RE-EDS is computationally more efficient than standard pairwise free-energy methods.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Hayes RL, Nixon CF, Marqusee S, Brooks CL. Selection pressures on evolution of ribonuclease H explored with rigorous free-energy-based design. Proc Natl Acad Sci U S A 2024; 121:e2312029121. [PMID: 38194446 PMCID: PMC10801872 DOI: 10.1073/pnas.2312029121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024] Open
Abstract
Understanding natural protein evolution and designing novel proteins are motivating interest in development of high-throughput methods to explore large sequence spaces. In this work, we demonstrate the application of multisite λ dynamics (MSλD), a rigorous free energy simulation method, and chemical denaturation experiments to quantify evolutionary selection pressure from sequence-stability relationships and to address questions of design. This study examines a mesophilic phylogenetic clade of ribonuclease H (RNase H), furthering its extensive characterization in earlier studies, focusing on E. coli RNase H (ecRNH) and a more stable consensus sequence (AncCcons) differing at 15 positions. The stabilities of 32,768 chimeras between these two sequences were computed using the MSλD framework. The most stable and least stable chimeras were predicted and tested along with several other sequences, revealing a designed chimera with approximately the same stability increase as AncCcons, but requiring only half the mutations. Comparing the computed stabilities with experiment for 12 sequences reveals a Pearson correlation of 0.86 and root mean squared error of 1.18 kcal/mol, an unprecedented level of accuracy well beyond less rigorous computational design methods. We then quantified selection pressure using a simple evolutionary model in which sequences are selected according to the Boltzmann factor of their stability. Selection temperatures from 110 to 168 K are estimated in three ways by comparing experimental and computational results to evolutionary models. These estimates indicate selection pressure is high, which has implications for evolutionary dynamics and for the accuracy required for design, and suggests accurate high-throughput computational methods like MSλD may enable more effective protein design.
Collapse
Affiliation(s)
- Ryan L. Hayes
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA92697
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charlotte F. Nixon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
4
|
Champion C, Gall R, Ries B, Rieder SR, Barros EP, Riniker S. Accelerating Alchemical Free Energy Prediction Using a Multistate Method: Application to Multiple Kinases. J Chem Inf Model 2023; 63:7133-7147. [PMID: 37948537 PMCID: PMC10685456 DOI: 10.1021/acs.jcim.3c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Alchemical free-energy methods based on molecular dynamics (MD) simulations have become important tools to identify modifications of small organic molecules that improve their protein binding affinity during lead optimization. The routine application of pairwise free-energy methods to rank potential binders from best to worst is impacted by the combinatorial increase in calculations to perform when the number of molecules to assess grows. To address this fundamental limitation, our group has developed replica-exchange enveloping distribution sampling (RE-EDS), a pathway-independent multistate method, enabling the calculation of alchemical free-energy differences between multiple ligands (N > 2) from a single MD simulation. In this work, we apply the method to a set of four kinases with diverse binding pockets and their corresponding inhibitors (42 in total), chosen to showcase the general applicability of RE-EDS in prospective drug design campaigns. We show that for the targets studied, RE-EDS is able to model up to 13 ligands simultaneously with high sampling efficiency, leading to a substantial decrease in computational cost when compared to pairwise methods.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - René Gall
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | | | - Salomé R. Rieder
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Emilia P. Barros
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Gracia Carmona O, Gillhofer M, Tomasiak L, De Ruiter A, Oostenbrink C. Accelerated Enveloping Distribution Sampling to Probe the Presence of Water Molecules. J Chem Theory Comput 2023. [PMID: 37167545 DOI: 10.1021/acs.jctc.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Determining the presence of water molecules at protein-ligand interfaces is still a challenging task in free-energy calculations. The inappropriate placement of water molecules results in the stabilization of wrong conformational orientations of the ligand. With classical alchemical perturbation methods, such as thermodynamic integration (TI), it is essential to know the amount of water molecules in the active site of the respective ligands. However, the resolution of the crystal structure and the correct assignment of the electron density do not always lead to a clear placement of water molecules. In this work, we apply the one-step perturbation method named accelerated enveloping distribution sampling (AEDS) to determine the presence of water molecules in the active site by probing them in a fast and straightforward way. Based on these results, we combined the AEDS method with standard TI to calculate accurate binding free energies in the presence of buried water molecules. The main idea is to perturb the water molecules with AEDS such that they are allowed to alternate between regular water molecules and non-interacting dummy particles while treating the ligand with TI over an alchemical pathway. We demonstrate the use of AEDS to probe the presence of water molecules for six different test systems. For one of these, previous calculations showed difficulties to reproduce the experimental binding free energies, and here, we use the combined TI-AEDS approach to tackle these issues.
Collapse
Affiliation(s)
- Oriol Gracia Carmona
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Gillhofer
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lisa Tomasiak
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Anita De Ruiter
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
6
|
Barros EP, Ries B, Champion C, Rieder SR, Riniker S. Accounting for Solvation Correlation Effects on the Thermodynamics of Water Networks in Protein Cavities. J Chem Inf Model 2023; 63:1794-1805. [PMID: 36917685 PMCID: PMC10052353 DOI: 10.1021/acs.jcim.2c01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macromolecular recognition and ligand binding are at the core of biological function and drug discovery efforts. Water molecules play a significant role in mediating the protein-ligand interaction, acting as more than just the surrounding medium by affecting the thermodynamics and thus the outcome of the binding process. As individual water contributions are impossible to measure experimentally, a range of computational methods have emerged to identify hydration sites in protein pockets and characterize their energetic contributions for drug discovery applications. Even though several methods model solvation effects explicitly, they focus on determining the stability of specific water sites independently and neglect solvation correlation effects upon replacement of clusters of water molecules, which typically happens in hit-to-lead optimization. In this work, we rigorously determine the conjoint effects of replacing all combinations of water molecules in protein binding pockets through the use of the RE-EDS multistate free-energy method, which combines Hamiltonian replica exchange (RE) and enveloping distribution sampling (EDS). Applications on the small bovine pancreatic trypsin inhibitor and four proteins of the bromodomain family illustrate the extent of solvation correlation effects on water thermodynamics, with the favorability of replacement of the water sites by pharmacophore probes highly dependent on the composition of the water network and the pocket environment. Given the ubiquity of water networks in biologically relevant protein targets, we believe our approach can be helpful for computer-aided drug discovery by providing a pocket-specific and a priori systematic consideration of solvation effects on ligand binding and selectivity.
Collapse
Affiliation(s)
- Emilia P Barros
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin Ries
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Candide Champion
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Salomé R Rieder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Rieder SR, Ries BJ, Kubincová A, Champion C, Barros EP, Hünenberger PH, Riniker S. Leveraging the Sampling Efficiency of RE-EDS in OpenMM Using a Shifted Reaction-Field With an Atom-Based Cutoff. J Chem Phys 2022; 157:104117. [DOI: 10.1063/5.0107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replica-exchange enveloping distribution sampling (RE-EDS) is a pathway-independent multistate free-energy method, currently implemented in the GROMOS software package for molecular dynamics (MD) simulations. It has a high intrinsic sampling efficiency as the interactions between the unperturbed particles have to be calculated only once for multiple end-states. As a result, RE-EDS is an attractive method for the calculation of relative solvation and binding free energies. An essential requirement for reaching this high efficiency is the separability of the nonbonded interactions into solute-solute, solute-environment, and environment-environment contributions. Such a partitioning is trivial when using a Coulomb term with a reaction-field (RF) correction to model the electrostatic interactions, but not when using lattice- sum schemes. To avoid cutoff artifacts, the RF correction is typically used in combination with a charge-group based cutoff, which is not supported by most small-molecule force fields and other MD engines. To address this issue, we investigate the combination of RE-EDS simulations with a recently introduced RF scheme including a shifting function that enables the rigorous calculation of RF electrostatics with atom-based cutoffs. The resulting approach is validated by calculating solvation free energies with the generalized AMBER force field (GAFF) in water and chloroform using both the GROMOS software package and a proof-of-concept implementation in OpenMM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich D-CHAB, Switzerland
| |
Collapse
|
8
|
Rieder SR, Ries B, Schaller K, Champion C, Barros EP, Hünenberger PH, Riniker S. Replica-Exchange Enveloping Distribution Sampling Using Generalized AMBER Force-Field Topologies: Application to Relative Hydration Free-Energy Calculations for Large Sets of Molecules. J Chem Inf Model 2022; 62:3043-3056. [PMID: 35675713 PMCID: PMC9241072 DOI: 10.1021/acs.jcim.2c00383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Free-energy differences
between pairs of end-states can be estimated
based on molecular dynamics (MD) simulations using standard pathway-dependent
methods such as thermodynamic integration (TI), free-energy perturbation,
or Bennett’s acceptance ratio. Replica-exchange enveloping
distribution sampling (RE-EDS), on the other hand, allows for the
sampling of multiple end-states in a single simulation without the
specification of any pathways. In this work, we use the RE-EDS method
as implemented in GROMOS together with generalized AMBER force-field
(GAFF) topologies, converted to a GROMOS-compatible format with a
newly developed GROMOS++ program amber2gromos, to
compute relative hydration free energies for a series of benzene derivatives.
The results obtained with RE-EDS are compared to the experimental
data as well as calculated values from the literature. In addition,
the estimated free-energy differences in water and in vacuum are compared
to values from TI calculations carried out with GROMACS. The hydration
free energies obtained using RE-EDS for multiple molecules are found
to be in good agreement with both the experimental data and the results
calculated using other free-energy methods. While all considered free-energy
methods delivered accurate results, the RE-EDS calculations required
the least amount of total simulation time. This work serves as a validation
for the use of GAFF topologies with the GROMOS simulation package
and the RE-EDS approach. Furthermore, the performance of RE-EDS for
a large set of 28 end-states is assessed with promising results.
Collapse
Affiliation(s)
- Salomé R Rieder
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin Ries
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Kay Schaller
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Candide Champion
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Emilia P Barros
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Ries B, Rieder S, Rhiner C, Hünenberger PH, Riniker S. RestraintMaker: a graph-based approach to select distance restraints in free-energy calculations with dual topology. J Comput Aided Mol Des 2022; 36:175-192. [PMID: 35314898 PMCID: PMC8994745 DOI: 10.1007/s10822-022-00445-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
The calculation of relative binding free energies (RBFE) involves the choice of the end-state/system representation, of a sampling approach, and of a free-energy estimator. System representations are usually termed "single topology" or "dual topology". As the terminology is often used ambiguously in the literature, a systematic categorization of the system representations is proposed here. In the dual-topology approach, the molecules are simulated as separate molecules. Such an approach is relatively easy to automate for high-throughput RBFE calculations compared to the single-topology approach. Distance restraints are commonly applied to prevent the molecules from drifting apart, thereby improving the sampling efficiency. In this study, we introduce the program RestraintMaker, which relies on a greedy algorithm to find (locally) optimal distance restraints between pairs of atoms based on geometric measures. The algorithm is further extended for multi-state methods such as enveloping distribution sampling (EDS) or multi-site [Formula: see text]-dynamics. The performance of RestraintMaker is demonstrated for toy models and for the calculation of relative hydration free energies. The Python program can be used in script form or through an interactive GUI within PyMol. The selected distance restraints can be written out in GROMOS or GROMACS file formats. Additionally, the program provides a human-readable JSON format that can easily be parsed and processed further. The code of RestraintMaker is freely available on GitHub https://github.com/rinikerlab/restraintmaker.
Collapse
Affiliation(s)
- Benjamin Ries
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland
| | - Salomé Rieder
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland
| | - Clemens Rhiner
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland.
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland.
| |
Collapse
|
10
|
Azimi S, Khuttan S, Wu JZ, Pal RK, Gallicchio E. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. J Chem Inf Model 2022; 62:309-323. [PMID: 34990555 DOI: 10.1021/acs.jcim.1c01129] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against protein-ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Rajat K Pal
- Roivant Sciences, Inc., Boston, Massachusetts 02210, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
11
|
Ries B, Normak K, Weiß RG, Rieder S, Barros EP, Champion C, König G, Riniker S. Relative free-energy calculations for scaffold hopping-type transformations with an automated RE-EDS sampling procedure. J Comput Aided Mol Des 2022; 36:117-130. [PMID: 34978000 PMCID: PMC8907147 DOI: 10.1007/s10822-021-00436-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
The calculation of relative free-energy differences between different compounds plays an important role in drug design to identify potent binders for a given protein target. Most rigorous methods based on molecular dynamics simulations estimate the free-energy difference between pairs of ligands. Thus, the comparison of multiple ligands requires the construction of a “state graph”, in which the compounds are connected by alchemical transformations. The computational cost can be optimized by reducing the state graph to a minimal set of transformations. However, this may require individual adaptation of the sampling strategy if a transformation process does not converge in a given simulation time. In contrast, path-free methods like replica-exchange enveloping distribution sampling (RE-EDS) allow the sampling of multiple states within a single simulation without the pre-definition of alchemical transition paths. To optimize sampling and convergence, a set of RE-EDS parameters needs to be estimated in a pre-processing step. Here, we present an automated procedure for this step that determines all required parameters, improving the robustness and ease of use of the methodology. To illustrate the performance, the relative binding free energies are calculated for a series of checkpoint kinase 1 inhibitors containing challenging transformations in ring size, opening/closing, and extension, which reflect changes observed in scaffold hopping. The simulation of such transformations with RE-EDS can be conducted with conventional force fields and, in particular, without soft bond-stretching terms.
Collapse
Affiliation(s)
- Benjamin Ries
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Karl Normak
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - R Gregor Weiß
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Salomé Rieder
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Emília P Barros
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Candide Champion
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.
| |
Collapse
|
12
|
König G, Ries B, Hünenberger PH, Riniker S. Efficient Alchemical Intermediate States in Free Energy Calculations Using λ-Enveloping Distribution Sampling. J Chem Theory Comput 2021; 17:5805-5815. [PMID: 34476947 DOI: 10.1021/acs.jctc.1c00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alchemical free energy calculations generally require intermediate states along a coupling parameter λ to establish sufficient phase space overlap for obtaining converged results. Such intermediate states can also be engineered to lower the energy barriers and, consequently, reduce the required sampling time. The recently introduced λ-enveloping distribution sampling (λ-EDS) scheme combines the properties of the minimum variance pathway and the EDS methods to improve sampling and allow for larger steps along the alchemical pathway compared to conventional approaches. This scheme also eliminates the need for soft-core potentials and retains the behavior of conventional λ-intermediate states as a limiting case. In this study, an automated procedure is developed to select the parameters of λ-EDS for optimal performance. The underlying theory is illustrated based on simulations of simple test systems (bond length changes in harmonic oscillators, mutations of dihedral angles, and charge creation in water), as well as on the calculation of the absolute hydration free energies of 12 small organic molecules.
Collapse
Affiliation(s)
- Gerhard König
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.,Centre for Enzyme Innovation, University of Portsmouth, St. Michael's Building, PO1 2DT Portsmouth, U.K
| | - Benjamin Ries
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Fleck M, Wieder M, Boresch S. Dummy Atoms in Alchemical Free Energy Calculations. J Chem Theory Comput 2021; 17:4403-4419. [PMID: 34125525 PMCID: PMC8280730 DOI: 10.1021/acs.jctc.0c01328] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/07/2023]
Abstract
In calculations of relative free energy differences, the number of atoms of the initial and final states is rarely the same. This necessitates the introduction of dummy atoms. These placeholders interact with the physical system only by bonded energy terms. We investigate the conditions necessary so that the presence of dummy atoms does not influence the result of a relative free energy calculation. On the one hand, one has to ensure that dummy atoms only give a multiplicative contribution to the partition function so that their contribution cancels from double-free energy differences. On the other hand, the bonded terms used to attach a dummy atom (or group of dummy atoms) to the physical system have to maintain it in a well-defined position and orientation relative to the physical system. A detailed theoretical analysis of both aspects is provided, illustrated by 24 calculations of relative solvation free energy differences, for which all four legs of the underlying thermodynamic cycle were computed. Cycle closure (or lack thereof) was used as a sensitive indicator to probing the effects of dummy atom treatment on the resulting free energy differences. We find that a naive (but often practiced) treatment of dummy atoms results in errors of up to kBT when calculating the relative solvation free energy difference between two small solutes, such as methane and ammonia. While our analysis focuses on the so-called single topology approach to set up alchemical transformations, similar considerations apply to dual topology, at least many widely used variants thereof.
Collapse
Affiliation(s)
- Markus Fleck
- Faculty
of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Marcus Wieder
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Stefan Boresch
- Faculty
of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Wade AD, Huggins DJ. Identification of Optimal Ligand Growth Vectors Using an Alchemical Free-Energy Method. J Chem Inf Model 2020; 60:5580-5594. [PMID: 32810401 DOI: 10.1021/acs.jcim.0c00610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, a novel method to rationally design inhibitors with improved steric contacts and enhanced binding free energies is presented. This new method uses alchemical single step perturbation calculations to rapidly optimize the van der Waals interactions of a small molecule in a protein-ligand complex in order to maximize its binding affinity. The results of the optimizer are used to predict beneficial growth vectors on the ligand, and good agreement is found between the predictions from the optimizer and a more rigorous free energy calculation, with a Spearman's rank order correlation of 0.59. The advantage of the method presented here is the significant speed up of over 10-fold compared to traditional free energy calculations and sublinear scaling with the number of growth vectors assessed. Where experimental data were available, mutations from hydrogen to a methyl group at sites highlighted by the optimizer were calculated with MBAR, and the mean unsigned error between experimental and calculated values of the binding free energy was 0.83 kcal/mol.
Collapse
Affiliation(s)
- Alexander D Wade
- TCM Group, Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, Belfer Research Building, 413 East 69th Street, 16th Floor, Box 300, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
15
|
König G, Glaser N, Schroeder B, Kubincová A, Hünenberger PH, Riniker S. An Alternative to Conventional λ-Intermediate States in Alchemical Free Energy Calculations: λ-Enveloping Distribution Sampling. J Chem Inf Model 2020; 60:5407-5423. [PMID: 32794763 DOI: 10.1021/acs.jcim.0c00520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alchemical free energy calculations typically rely on intermediate states to bridge between the relevant phase spaces of the two end states. These intermediate states are usually created by mixing the energies or parameters of the end states according to a coupling parameter λ. The choice of the procedure has a strong impact on the efficiency of the calculation, as it affects both the encountered energy barriers and the phase space overlap between the states. The present work builds on the connection between the minimum variance pathway (MVP) and enveloping distribution sampling (EDS). It is shown that both methods can be regarded as special cases of a common scheme referred to as λ-EDS, which can also reproduce the behavior of conventional λ-intermediate states. A particularly attractive feature of λ-EDS is its ability to emulate the use of soft core potentials (SCP) while avoiding the associated computational overhead when applying efficient free energy estimators such as the multistate Bennett's acceptance ratio (MBAR). The method is illustrated for both relative and absolute free energy calculations considering five benchmark systems. The first two systems (charge inversion and cavity creation in a dipolar solvent) demonstrate the use of λ-EDS as an alternative coupling scheme in the context of thermodynamic integration (TI). The three other systems (change of bond length, change of dihedral angles, and cavity creation in water) investigate the efficiency and optimal choice of parameters in the context of free energy perturbation (FEP) and Bennett's acceptance ratio (BAR). It is shown that λ-EDS allows larger steps along the alchemical pathway than conventional intermediate states.
Collapse
Affiliation(s)
- Gerhard König
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Nina Glaser
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin Schroeder
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alžbeta Kubincová
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Perthold JW, Petrov D, Oostenbrink C. Toward Automated Free Energy Calculation with Accelerated Enveloping Distribution Sampling (A-EDS). J Chem Inf Model 2020; 60:5395-5406. [PMID: 32492343 PMCID: PMC7686955 DOI: 10.1021/acs.jcim.0c00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Free-energy
perturbation (FEP) methods are commonly used in drug
design to calculate relative binding free energies of different ligands
to a common host protein. Alchemical ligand transformations are usually
performed in multiple steps which need to be chosen carefully to ensure
sufficient phase-space overlap between neighboring states. With one-step
or single-step FEP techniques, a single reference state is designed
that samples phase-space not only representative of a full transformation
but also ideally resembles multiple ligand end states and hence allows
for efficient multistate perturbations. Enveloping distribution sampling
(EDS) is one example for such a method in which the reference state
is created by a mathematical combination of the different ligand end
states based on solid statistical mechanics. We have recently proposed
a novel approach to EDS which enables efficient barrier crossing between
the different end states, termed accelerated EDS (A-EDS). In this
work, we further simplify the parametrization of the A-EDS reference
state and demonstrate the automated calculation of multiple free-energy
differences between different ligands from a single simulation in
three different well-described drug design model systems.
Collapse
Affiliation(s)
- Jan Walther Perthold
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Dražen Petrov
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
17
|
Hayes RL, Vilseck JZ, Brooks CL. Approaching protein design with multisite λ dynamics: Accurate and scalable mutational folding free energies in T4 lysozyme. Protein Sci 2019; 27:1910-1922. [PMID: 30175503 DOI: 10.1002/pro.3500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
The estimation of changes in free energy upon mutation is central to the problem of protein design. Modern protein design methods have had remarkable success over a wide range of design targets, but are reaching their limits in ligand binding and enzyme design due to insufficient accuracy in mutational free energies. Alchemical free energy calculations have the potential to supplement modern design methods through more accurate molecular dynamics based prediction of free energy changes, but suffer from high computational cost. Multisite λ dynamics (MSλD) is a particularly efficient and scalable free energy method with potential to explore combinatorially large sequence spaces inaccessible with other free energy methods. This work aims to quantify the accuracy of MSλD and demonstrate its scalability. We apply MSλD to the classic problem of calculating folding free energies in T4 lysozyme, a system with a wealth of experimental measurements. Single site mutants considering 32 mutations show remarkable agreement with experiment with a Pearson correlation of 0.914 and mean unsigned error of 1.19 kcal/mol. Multisite mutants in systems with up to five concurrent mutations spanning 240 different sequences show comparable agreement with experiment. These results demonstrate the promise of MSλD in exploring large sequence spaces for protein design.
Collapse
Affiliation(s)
- Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Jonah Z Vilseck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109.,Biophysics Program, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
18
|
Maurer M, Hansen N, Oostenbrink C. Comparison of free-energy methods using a tripeptide-water model system. J Comput Chem 2018; 39:2226-2242. [PMID: 30280398 PMCID: PMC6220940 DOI: 10.1002/jcc.25537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 11/24/2022]
Abstract
We investigate the ability of several free-energy calculation methods to combine two alchemical changes. We use Bennett acceptance ratio (BAR), thermodynamic integration (TI), extended TI (X-TI), and enveloping distribution sampling (EDS) to perturb a water molecule, which is restrained to an amino acid that is also being perturbed. In addition to these pairwise methods, we present two two-dimensional approaches, EDS-TI and two-dimensional TI (2D-TI). We compare feasibility, efficiency and usability of these methods in regard to our simple model system, which mimics the displacement of a water molecule in the active site of a protein on residue mutation. The correct treatment of structural water has been shown to greatly aid binding affinity calculations in some cases that remained elusive otherwise. This is of broad interest in, for example, drug design, and we conclude that thus far, the pairwise method BAR and also the newer X-TI remain the most suitable methods to treat this problem as long as few end states are involved. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Material Sciences and Process EngineeringInstitute of Molecular Modeling and Simulation, University of Natural Resources and Life SciencesMuthgasse 18, A‐1190, ViennaAustria
| | - Niels Hansen
- Department of Energy‐, Process‐ and Bio‐Engineering, University of StuttgartInstitute of Thermodynamics and Thermal Process EngineeringPfaffenwaldring 9, 70569, StuttgartGermany
| | - Chris Oostenbrink
- Department of Material Sciences and Process EngineeringInstitute of Molecular Modeling and Simulation, University of Natural Resources and Life SciencesMuthgasse 18, A‐1190, ViennaAustria
| |
Collapse
|
19
|
Perthold JW, Oostenbrink C. Accelerated Enveloping Distribution Sampling: Enabling Sampling of Multiple End States while Preserving Local Energy Minima. J Phys Chem B 2018; 122:5030-5037. [DOI: 10.1021/acs.jpcb.8b02725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Walther Perthold
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
20
|
Sidler D, Cristòfol-Clough M, Riniker S. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS). J Chem Theory Comput 2017; 13:3020-3030. [PMID: 28510459 DOI: 10.1021/acs.jctc.7b00286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | | | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Ding X, Vilseck JZ, Hayes RL, Brooks CL. Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation. J Chem Theory Comput 2017; 13:2501-2510. [PMID: 28510433 DOI: 10.1021/acs.jctc.7b00204] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the present article, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs sampler framework, which we call Gibbs sampler-based λ-dynamics (GSLD). GSLD, like traditional λ-dynamics, can be readily extended to calculate free energy differences between multiple ligands in one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator (RBE), for use in conjunction with GSLD. Compared with the current empirical estimator, the advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the current empirical estimator. We also show that the multistate Bennett acceptance ratio equation or the unbinned weighted histogram analysis method equation can be derived using the RBE. We illustrate the use and performance of this new free energy computational framework by application to a simple harmonic system as well as relevant calculations of small molecule relative free energies of solvation and binding to a protein receptor. Our findings demonstrate consistent and improved performance compared with conventional alchemical free energy methods.
Collapse
Affiliation(s)
- Xinqiang Ding
- Department of Computational Medicine & Bioinformatics, ‡Department of Chemistry, §Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jonah Z Vilseck
- Department of Computational Medicine & Bioinformatics, ‡Department of Chemistry, §Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ryan L Hayes
- Department of Computational Medicine & Bioinformatics, ‡Department of Chemistry, §Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Computational Medicine & Bioinformatics, ‡Department of Chemistry, §Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Sidler D, Schwaninger A, Riniker S. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation. J Chem Phys 2017; 145:154114. [PMID: 27782485 DOI: 10.1063/1.4964781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.
Collapse
Affiliation(s)
- Dominik Sidler
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Arthur Schwaninger
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
23
|
Hayes RL, Armacost KA, Vilseck JZ, Brooks CL. Adaptive Landscape Flattening Accelerates Sampling of Alchemical Space in Multisite λ Dynamics. J Phys Chem B 2017; 121:3626-3635. [PMID: 28112940 DOI: 10.1021/acs.jpcb.6b09656] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multisite λ dynamics (MSλD) is a powerful emerging method in free energy calculation that allows prediction of relative free energies for a large set of compounds from very few simulations. Calculating free energy differences between substituents that constitute large volume or flexibility jumps in chemical space is difficult for free energy methods in general, and for MSλD in particular, due to large free energy barriers in alchemical space. This study demonstrates that a simple biasing potential can flatten these barriers and introduces an algorithm that determines system specific biasing potential coefficients. Two sources of error, deep traps at the end points and solvent disruption by hard-core potentials, are identified. Both scale with the size of the perturbed substituent and are removed by sharp biasing potentials and a new soft-core implementation, respectively. MSλD with landscape flattening is demonstrated on two sets of molecules: derivatives of the heat shock protein 90 inhibitor geldanamycin and derivatives of benzoquinone. In the benzoquinone system, landscape flattening leads to 2 orders of magnitude improvement in transition rates between substituents and robust solvation free energies. Landscape flattening opens up new applications for MSλD by enabling larger chemical perturbations to be sampled with improved precision and accuracy.
Collapse
Affiliation(s)
- Ryan L Hayes
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Kira A Armacost
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jonah Z Vilseck
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Castro TG, Micaêlo NM. Conformational and thermodynamic properties of non-canonical α,α-dialkyl glycines in the peptaibol Alamethicin: molecular dynamics studies. J Phys Chem B 2014; 118:9861-70. [PMID: 25091499 DOI: 10.1021/jp505400q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the structure, dynamic and thermodynamic properties of noncanonical disubstituted amino acids (α,α-dialkyl glycines), also known as non-natural amino acids, in the peptaibol Alamethicin. The amino acids under study are Aib (α-amino isobutyric acid or α-methyl alanine), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Dbzg (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structure in peptidomimetics. To test this hypothesis, new peptidomimetics of Alamethicin were constructed by replacing the native Aib positions of Alamethicin by one or more new α,α-dialkyl glycines. Dhg and Ac6c demonstrated the capacity to induce well-defined α-helical structures. Dhg and Ac6c also promote the thermodynamic stabilization of these peptides in a POPC model membrane and are better alternatives to the Aib in Alamethicin. These noncanonical amino acids also improved secondary structure properties, revealing preorganization in water and maintenance of α helical structure in POPC. We show that it is possible to optimize the helicity and thermodynamic properties of native Alamethicin, and we suggest that these amino acids could be incorporated in other peptides with similar structural effect.
Collapse
Affiliation(s)
- Tarsila G Castro
- Departamento de Química, Escola de Ciências, Universidade do Minho , Largo do Paço, Braga 4704-553, Portugal
| | | |
Collapse
|
25
|
Hansen N, van Gunsteren WF. Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 2014; 10:2632-47. [PMID: 26586503 DOI: 10.1021/ct500161f] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Free-energy calculations in the framework of classical molecular dynamics simulations are nowadays used in a wide range of research areas including solvation thermodynamics, molecular recognition, and protein folding. The basic components of a free-energy calculation, that is, a suitable model Hamiltonian, a sampling protocol, and an estimator for the free energy, are independent of the specific application. However, the attention that one has to pay to these components depends considerably on the specific application. Here, we review six different areas of application and discuss the relative importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the many pitfalls present in free energy calculations.
Collapse
Affiliation(s)
- Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany.,Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| |
Collapse
|
26
|
Huang W, Lin Z, van Gunsteren WF. Use of Enveloping Distribution Sampling to Evaluate Important Characteristics of Biomolecular Force Fields. J Phys Chem B 2014; 118:6424-30. [DOI: 10.1021/jp411005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Huang
- Laboratory of Physical Chemistry,
Swiss Federal Institute of Technology, ETH, Vladimir-Prelog-Weg 2/HCI, 8093 Zürich, Switzerland
| | - Zhixiong Lin
- Laboratory of Physical Chemistry,
Swiss Federal Institute of Technology, ETH, Vladimir-Prelog-Weg 2/HCI, 8093 Zürich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory of Physical Chemistry,
Swiss Federal Institute of Technology, ETH, Vladimir-Prelog-Weg 2/HCI, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Lin Z, van Gunsteren WF. Enhanced conformational sampling using enveloping distribution sampling. J Chem Phys 2013; 139:144105. [DOI: 10.1063/1.4824391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Rocklin GJ, Mobley DL, Dill KA. Separated topologies--a method for relative binding free energy calculations using orientational restraints. J Chem Phys 2013; 138:085104. [PMID: 23464180 DOI: 10.1063/1.4792251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Orientational restraints can improve the efficiency of alchemical free energy calculations, but they are not typically applied in relative binding calculations, which compute the affinity difference been two ligands. Here, we describe a new "separated topologies" method, which computes relative binding free energies using orientational restraints and which has several advantages over existing methods. While standard approaches maintain the initial and final ligand in a shared orientation, the separated topologies approach allows the initial and final ligands to have distinct orientations. This avoids a slowly converging reorientation step in the calculation. The separated topologies approach can also be applied to determine the relative free energies of multiple orientations of the same ligand. We illustrate the approach by calculating the relative binding free energies of two compounds to an engineered site in Cytochrome C Peroxidase.
Collapse
Affiliation(s)
- Gabriel J Rocklin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA.
| | | | | |
Collapse
|
29
|
Kaus JW, Pierce LT, Walker RC, McCammont JA. Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package. J Chem Theory Comput 2013; 9. [PMID: 24185531 DOI: 10.1021/ct400340s] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license.
Collapse
Affiliation(s)
- Joseph W Kaus
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365
| | | | | | | |
Collapse
|
30
|
Hansen N, Allison JR, Hodel FH, van Gunsteren WF. Relative free enthalpies for point mutations in two proteins with highly similar sequences but different folds. Biochemistry 2013; 52:4962-70. [PMID: 23802564 DOI: 10.1021/bi400272q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enveloping distribution sampling was used to calculate free-enthalpy changes associated with single amino acid mutations for a pair of proteins, GA95 and GB95, that show 95% sequence identity yet fold into topologically different structures. Of the L → A, I → F, and L → Y mutations at positions 20, 30, and 45, respectively, of the 56-residue sequence, the first and the last contribute the most to the free-enthalpy difference between the native and non-native sequence-structure combinations, in agreement with the experimental findings for this protein pair. The individual free-enthalpy changes are almost sequence-independent in the four-strand/one-helix structure, the stable form of GB95, while in the three-helix bundle structure, the stable form of GA95, an interplay between residues 20 and 45 is observed.
Collapse
Affiliation(s)
- Niels Hansen
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology , ETH, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Riccardo Baron
- Department of Medicinal Chemistry, College of Pharmacy, and The Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112-5820;
| | - J. Andrew McCammon
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California 92093-0365;
| |
Collapse
|
32
|
Hansen N, Hünenberger PH, van Gunsteren WF. Efficient Combination of Environment Change and Alchemical Perturbation within the Enveloping Distribution Sampling (EDS) Scheme: Twin-System EDS and Application to the Determination of Octanol-Water Partition Coefficients. J Chem Theory Comput 2013; 9:1334-46. [PMID: 26587596 DOI: 10.1021/ct300933y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The methodology of Enveloping Distribution Sampling (EDS) is extended to probe a single-simulation alternative to the thermodynamic cycle that is standardly used for measuring the effect of a modification of a chemical compound, e.g. from a given species to a chemical derivative for a ligand or solute molecule, on the free-enthalpy change associated with a change in environment, e.g. from the unbound state to the bound state for a protein-ligand system or from one solvent to another one for a solute molecule. This alternative approach relies on the coupled simulation of two systems (computational boxes) 1 and 2, and the method is therefore referred to as twin-system EDS. Systems 1 and 2 account for the two choices of environment. The end states of the alchemical perturbation for the twin-system associate the two alternative forms X and Y of the molecule to systems 1 and 2 or 2 and 1, respectively. In this way, the processes of transforming one molecule into the other are carried out simultaneously in opposite directions in the two environments, leading to a change in free enthalpy that is smaller than for the two individual processes and to an energy-difference distribution that is more symmetric. As an illustration, the method is applied to the calculation of octanol-water partition coefficients for C4 to C8 alkanes, 1-hexanol and 1,2-dimethoxyethane. It is shown in particular that the consideration of the residual hydration of octanol leads to calculated partition coefficients that are in better agreement with reported experimental numbers.
Collapse
Affiliation(s)
- Niels Hansen
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland
| |
Collapse
|
33
|
Lin Z, Riniker S, van Gunsteren WF. Free Enthalpy Differences between α-, π-, and 310-Helices of an Atomic Level Fine-Grained Alanine Deca-Peptide Solvated in Supramolecular Coarse-Grained Water. J Chem Theory Comput 2013; 9:1328-33. [DOI: 10.1021/ct3010497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhixiong Lin
- Laboratory of Physical Chemistry, Swiss Federal Institute
of Technology, ETH, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute
of Technology, ETH, 8093 Zürich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute
of Technology, ETH, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Lin Z, van Gunsteren WF. Combination of Enveloping Distribution Sampling (EDS) of a Soft-Core Reference-State Hamiltonian with One-Step Perturbation to Predict the Effect of Side Chain Substitution on the Relative Stability of Right- and Left-Helical Folds of β-Peptides. J Chem Theory Comput 2012; 9:126-34. [PMID: 26589016 DOI: 10.1021/ct300929q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Folding free enthalpies of many not too different polypeptides can be efficiently and accurately predicted with the one-step perturbation (OSP) method using only one or a few molecular dynamics (MD) simulations. In this article, we introduce a combination of enveloping distribution sampling (EDS) and the OSP method (EDS-OSP) and apply it to predict the free enthalpy differences between a right-handed 2.710/12-helix and a left-handed 314-helix for 16 β-peptides with slightly different side-chain substitution patterns. An EDS simulation of a designed soft-core reference-state peptide was carried out in which both helices were sampled. Then, the soft-core atoms were perturbed into physical atoms. Thus, free enthalpy differences between the two helices for the 16 β-peptides can be predicted from only one simulation. The results predicted by EDS-OSP and a previous OSP study are very similar, i.e., the deviations between the results of the 16 peptides are mostly within the order of kBT, and the average absolute deviation is 1.2 kJ mol(-1). Together with the EDS parameter update simulation, about 128 ns of MD simulations needed to be carried out using the EDS-OSP method, while 700 ns of MD simulations were required in the previous OSP study where two separate reference-state simulations and an additional long time MD simulation of one of the 16 β-peptides were carried out. Thus, the computational effort was significantly reduced, i.e., by more than a factor of 5, using the EDS-OSP method. Hence, we consider this method an efficient tool to predict conformational free enthalpy differences from MD simulations.
Collapse
Affiliation(s)
- Zhixiong Lin
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| |
Collapse
|
35
|
Mobley DL, Klimovich PV. Perspective: Alchemical free energy calculations for drug discovery. J Chem Phys 2012; 137:230901. [PMID: 23267463 PMCID: PMC3537745 DOI: 10.1063/1.4769292] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023] Open
Abstract
Computational techniques see widespread use in pharmaceutical drug discovery, but typically prove unreliable in predicting trends in protein-ligand binding. Alchemical free energy calculations seek to change that by providing rigorous binding free energies from molecular simulations. Given adequate sampling and an accurate enough force field, these techniques yield accurate free energy estimates. Recent innovations in alchemical techniques have sparked a resurgence of interest in these calculations. Still, many obstacles stand in the way of their routine application in a drug discovery context, including the one we focus on here, sampling. Sampling of binding modes poses a particular challenge as binding modes are often separated by large energy barriers, leading to slow transitions. Binding modes are difficult to predict, and in some cases multiple binding modes may contribute to binding. In view of these hurdles, we present a framework for dealing carefully with uncertainty in binding mode or conformation in the context of free energy calculations. With careful sampling, free energy techniques show considerable promise for aiding drug discovery.
Collapse
Affiliation(s)
- David L Mobley
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, USA.
| | | |
Collapse
|
36
|
Riniker S, Barandun LJ, Diederich F, Krämer O, Steffen A, van Gunsteren WF. Free enthalpies of replacing water molecules in protein binding pockets. J Comput Aided Mol Des 2012; 26:1293-309. [PMID: 23247390 DOI: 10.1007/s10822-012-9620-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.
Collapse
Affiliation(s)
- Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Lin Z, Timmerscheidt TA, van Gunsteren WF. Using enveloping distribution sampling to compute the free enthalpy difference between right- and left-handed helices of a β-peptide in solution. J Chem Phys 2012; 137:064108. [DOI: 10.1063/1.4742751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
König G, Miller BT, Boresch S, Wu X, Brooks BR. Enhanced Sampling in Free Energy Calculations: Combining SGLD with the Bennett's Acceptance Ratio and Enveloping Distribution Sampling Methods. J Chem Theory Comput 2012; 8:3650-62. [PMID: 26593010 DOI: 10.1021/ct300116r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the key requirements for the accurate calculation of free energy differences is proper sampling of conformational space. Especially in biological applications, molecular dynamics simulations are often confronted with rugged energy surfaces and high energy barriers, leading to insufficient sampling and, in turn, poor convergence of the free energy results. In this work, we address this problem by employing enhanced sampling methods. We explore the possibility of using self-guided Langevin dynamics (SGLD) to speed up the exploration process in free energy simulations. To obtain improved free energy differences from such simulations, it is necessary to account for the effects of the bias due to the guiding forces. We demonstrate how this can be accomplished for the Bennett's acceptance ratio (BAR) and the enveloping distribution sampling (EDS) methods. While BAR is considered among the most efficient methods available for free energy calculations, the EDS method developed by Christ and van Gunsteren is a promising development that reduces the computational costs of free energy calculations by simulating a single reference state. To evaluate the accuracy of both approaches in connection with enhanced sampling, EDS was implemented in CHARMM. For testing, we employ benchmark systems with analytical reference results and the mutation of alanine to serine. We find that SGLD with reweighting can provide accurate results for BAR and EDS where conventional molecular dynamics simulations fail. In addition, we compare the performance of EDS with other free energy methods. We briefly discuss the implications of our results and provide practical guidelines for conducting free energy simulations with SGLD.
Collapse
Affiliation(s)
- Gerhard König
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Benjamin T Miller
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stefan Boresch
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
39
|
Assessment of enveloping distribution sampling to calculate relative free enthalpies of binding for eight netropsin-DNA duplex complexes in aqueous solution. J Comput Chem 2012; 33:640-51. [DOI: 10.1002/jcc.22879] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022]
|
40
|
Lin Z, Liu H, Riniker S, van Gunsteren WF. On the Use of Enveloping Distribution Sampling (EDS) to Compute Free Enthalpy Differences between Different Conformational States of Molecules: Application to 310-, α-, and π-Helices. J Chem Theory Comput 2011; 7:3884-97. [DOI: 10.1021/ct200623b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhixiong Lin
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei, Anhui 230027, People’s Republic of China
| | - Haiyan Liu
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei, Anhui 230027, People’s Republic of China
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| |
Collapse
|
41
|
Riniker S, Christ CD, Hansen HS, Hünenberger PH, Oostenbrink C, Steiner D, van Gunsteren WF. Calculation of Relative Free Energies for Ligand-Protein Binding, Solvation, and Conformational Transitions Using the GROMOS Software. J Phys Chem B 2011; 115:13570-7. [DOI: 10.1021/jp204303a] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Clara D. Christ
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Halvor S. Hansen
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Denise Steiner
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| |
Collapse
|