1
|
LaForge AC, Ben Ltaief L, Krishnan SR, Sisourat N, Mudrich M. Interatomic and intermolecular decay processes in quantum fluid clusters. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:126402. [PMID: 39509722 DOI: 10.1088/1361-6633/ad8fbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
In this comprehensive review, we explore interatomic and intermolecular correlated electronic decay phenomena observed in superfluid helium nanodroplets subjected to extreme ultraviolet radiation. Helium nanodroplets, known for their distinctive electronic and quantum fluid properties, provide an ideal environment for examining a variety of non-local electronic decay processes involving the transfer of energy, charge, or both between neighboring sites and resulting in ionization and the emission of low-kinetic energy electrons. Key processes include interatomic or intermolecular Coulombic decay and its variants, such as electron transfer-mediated decay. Insights gained from studying these light-matter interactions in helium nanodroplets enhance our understanding of the effects of ionizing radiation on other condensed-phase systems, including biological matter. We also emphasize the advanced experimental and computational techniques that make it possible to resolve electronic decay processes with high spectral and temporal precision. Utilizing ultrashort pulses from free-electron lasers, the temporal evolution of these processes can be followed, significantly advancing our comprehension of the dynamics within quantum fluid clusters and non-local electronic interactions in nanoscale systems.
Collapse
Affiliation(s)
- A C LaForge
- Department of Physics, University of Connecticut, Storrs, CT 06269, United States of America
| | - L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, C, Denmark
| | - S R Krishnan
- Department of Physics and QuCenDiEM-group, Indian Institute of Technology Madras, Chennai 600036, India
| | - N Sisourat
- Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, Sorbonne Université, CNRS, F-75005 Paris, France
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, C, Denmark
| |
Collapse
|
2
|
Bonhommeau DA. Collision of cesium atoms on helium nanodroplets: Unraveling mechanisms for surface capture at experimental velocities. J Chem Phys 2024; 161:184302. [PMID: 39513438 DOI: 10.1063/5.0231641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
The collision of cesium atoms on the surface of helium nanodroplets (HNDs) containing 1000 atoms is described by the ZPAD-mPL approach, a zero-point averaged dynamics (ZPAD) method based on a He-He pseudopotential adjusted to better reproduce the total energy of He1000. Four types of collisional patterns were identified depending on the initial projectile speed v0 and impact parameter b. At the lowest speeds (v0 ≲ 250 m s-1), Cs atoms are softly captured by the HND surface, while at the highest ones (v0 ≳ 500-600 m s-1), Cs atoms can travel through the droplet and move away. In between these two extreme cases, Cs atoms can be temporarily submerged in the HND before being expelled to the surface if b = 0 or cross the HND before being captured on its surface. The possibility for Cs capture at experimental velocities and droplet piercings at the highest ones contrasts with time-dependent density functional theory calculations, which predict Cs capture for velocities lower than 75 m s-1, and ring-polymer molecular dynamics (RPMD) or former ZPAD-like methods, which predict soft Cs capture up to 500 m s-1. ZPAD-mPL results are attributed to the liquid but non-superfluid nature of the droplet, which favors energy exchanges with the helium environment, and to low He-He binding energy and HND surface tension, which can stimulate helium ejections, especially at high projectile speeds. Despite the use of a pseudopotential to model He-He interactions, the heliophobicity of Cs atoms is maintained as demonstrated by their ability to remain localized on the HND surface or to be expelled to the HND surface after transient submersion in helium.
Collapse
Affiliation(s)
- David A Bonhommeau
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes 91025, France
| |
Collapse
|
3
|
Lushchikova OV, Gatchell M, Reichegger J, Kollotzek S, Zappa F, Mahmoodi-Darian M, Scheier P. Structure and formation of copper cluster ions in multiply charged He nanodroplets. Phys Chem Chem Phys 2023; 25:8463-8471. [PMID: 36916872 PMCID: PMC10032196 DOI: 10.1039/d2cp04569a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The structure of cationic and anionic Cu clusters grown in multiply charged superfluid He nanodroplets was investigated using He tagging as a chemical probe. Further, the structure assignment was done based on the magic-numbered ions, representing the most energetically favorable structures. The exact geometry of the cluster and positions of He is verified by calculations. It was found that the structure of the clusters grown in the He droplets is similar to that produced with a laser ablation source and the lowest energy structures predicted by theoretical investigations. The only difference is the structure of the Cu5+, which in our experiments has a twisted-X geometry, rather than a bipyramid or planar half-wheel geometry suggested by previous studies. This might be attributed to the different cluster formation mechanisms, the absence of the Ar-tag and the ultracold environment. It was also found that He tends to bind to partially more electro-negative or positive areas of the anionic or cationic clusters, respectively.
Collapse
Affiliation(s)
- O V Lushchikova
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - M Gatchell
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - J Reichegger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - S Kollotzek
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - F Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - M Mahmoodi-Darian
- Department of Physics, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - P Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Kollotzek S, Campos-Martínez J, Bartolomei M, Pirani F, Tiefenthaler L, Hernández MI, Lázaro T, Zunzunegui-Bru E, González-Lezana T, Bretón J, Hernández-Rojas J, Echt O, Scheier P. Helium nanodroplets as an efficient tool to investigate hydrogen attachment to alkali cations. Phys Chem Chem Phys 2022; 25:462-470. [PMID: 36477158 PMCID: PMC9768848 DOI: 10.1039/d2cp03841b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
We report a novel method to reversibly attach and detach hydrogen molecules to positively charged sodium clusters formed inside a helium nanodroplet host matrix. It is based on the controlled production of multiply charged helium droplets which, after picking up sodium atoms and exposure to H2 vapor, lead to the formation of Nam+(H2)n clusters, whose population was accurately measured using a time-of-flight mass spectrometer. The mass spectra reveal particularly favorable Na+(H2)n and Na2+(H2)n clusters for specific "magic" numbers of attached hydrogen molecules. The energies and structures of these clusters have been investigated by means of quantum-mechanical calculations employing analytical interaction potentials based on ab initio electronic structure calculations. A good agreement is found between the experimental and the theoretical magic numbers.
Collapse
Affiliation(s)
- Siegfried Kollotzek
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
| | | | | | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lukas Tiefenthaler
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
| | | | - Teresa Lázaro
- Instituto de Física Fundamental, C.S.I.C., Madrid, Spain.
| | | | | | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | - Olof Echt
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
- Department of Physics, University of New Hampshire, Durham, NH 03824, USA
| | - Paul Scheier
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
| |
Collapse
|
5
|
García-Alfonso E, Barranco M, Bonhommeau DA, Halberstadt N, Pi M, Calvo F. Clustering, collision, and relaxation dynamics in pure and doped helium nanoclusters: Density- vs particle-based approaches. J Chem Phys 2022; 157:014106. [DOI: 10.1063/5.0091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The clustering, collision, and relaxation dynamics of pristine and doped helium nanodroplets is theoretically investigated in cases of pickup and clustering of heliophilic argon, collision of heliophobic cesium atoms, and coalescence of two droplets brought into contact by their mutual long-range van der Waals interaction. Three approaches are used and compared with each other. The He time-dependent density functional theory method considers the droplet as a continuous medium and accounts for its superfluid character. The ring-polymer molecular dynamics method uses a path-integral description of nuclear motion and incorporates zero-point delocalization while bosonic exchange effects are ignored. Finally, the zero-point averaged dynamics approach is a mixed quantum–classical method in which quantum delocalization is described by attaching a frozen wavefunction to each He atom, equivalent to classical dynamics with effective interaction potentials. All three methods predict that the growth of argon clusters is significantly hindered by the helium host droplet due to the impeding shell structure around the dopants and kinematic effects freezing the growing cluster in metastable configurations. The effects of superfluidity are qualitatively manifested by different collision dynamics of the heliophilic atom at high velocities, as well as quadrupole oscillations that are not seen with particle-based methods, for droplets experiencing a collision with cesium atoms or merging with each other.
Collapse
Affiliation(s)
- Ernesto García-Alfonso
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manuel Barranco
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
- Department FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - David A. Bonhommeau
- Université de Reims Champagne Ardenne, CNRS, GSMA UMR 7331, 51100 Reims, France
| | - Nadine Halberstadt
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Martí Pi
- Department FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPHY, F38000 Grenoble, France
| |
Collapse
|
6
|
Albertini S, Gruber E, Zappa F, Krasnokutski S, Laimer F, Scheier P. Chemistry and physics of dopants embedded in helium droplets. MASS SPECTROMETRY REVIEWS 2022; 41:529-567. [PMID: 33993543 DOI: 10.1002/mas.21699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 05/18/2023]
Abstract
Helium droplets represent a cold inert matrix, free of walls with outstanding properties to grow complexes and clusters at conditions that are perfect to simulate cold and dense regions of the interstellar medium. At sub-Kelvin temperatures, barrierless reactions triggered by radicals or ions have been observed and studied by optical spectroscopy and mass spectrometry. The present review summarizes developments of experimental techniques and methods and recent results they enabled.
Collapse
Affiliation(s)
- Simon Albertini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Serge Krasnokutski
- Laboratory Astrophysics Group of the MPI for Astronomy, University of Jena, Jena, Germany
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Asmussen JD, Michiels R, Bangert U, Sisourat N, Binz M, Bruder L, Danailov M, Di Fraia M, Feifel R, Giannessi L, Plekan O, Prince KC, Squibb RJ, Uhl D, Wituschek A, Zangrando M, Callegari C, Stienkemeier F, Mudrich M. Time-Resolved Ultrafast Interatomic Coulombic Decay in Superexcited Sodium-Doped Helium Nanodroplets. J Phys Chem Lett 2022; 13:4470-4478. [PMID: 35561339 DOI: 10.1021/acs.jpclett.2c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The autoionization dynamics of superexcited superfluid He nanodroplets doped with Na atoms is studied by extreme-ultraviolet (XUV) time-resolved electron spectroscopy. Following excitation into the higher-lying droplet absorption band, the droplet relaxes into the lowest metastable atomic 1s2s 1,3S states from which interatomic Coulombic decay (ICD) takes place either between two excited He atoms or between an excited He atom and a Na atom attached to the droplet surface. Four main ICD channels are identified, and their decay times are determined by varying the delay between the XUV pulse and a UV pulse that ionizes the initial excited state and thereby quenches ICD. The decay times for the different channels all fall in the range of ∼1 ps, indicating that the ICD dynamics are mainly determined by the droplet environment. A periodic modulation of the transient ICD signals is tentatively attributed to the oscillation of the bubble forming around the localized He excitation.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Rupert Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Ulrich Bangert
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Nicolas Sisourat
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, 75005 Paris, France
| | - Marcel Binz
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lukas Bruder
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Luca Giannessi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Richard J Squibb
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Daniel Uhl
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Andreas Wituschek
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Frank Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Niman JW, Kamerin BS, Villers TH, Linker TM, Nakano A, Kresin VV. Probing the presence and absence of metal-fullerene electron transfer reactions in helium nanodroplets by deflection measurements. Phys Chem Chem Phys 2022; 24:10378-10383. [PMID: 35438706 DOI: 10.1039/d2cp00751g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-fullerene compounds are characterized by significant electron transfer to the fullerene cage, giving rise to an electric dipole moment. We use the method of electrostatic beam deflection to verify whether such reactions take place within superfluid helium nanodroplets between an embedded C60 molecule and either alkali (heliophobic) or rare-earth (heliophilic) atoms. The two cases lead to distinctly different outcomes: C60Nan (n = 1-4) display no discernable dipole moment, while C60Yb is strongly polar. This suggests that the fullerene and small alkali clusters fail to form a charge-transfer bond in the helium matrix despite their strong van der Waals attraction. The C60Yb dipole moment, on the other hand, is in agreement with the value expected for an ionic complex.
Collapse
Affiliation(s)
- John W Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| | - Benjamin S Kamerin
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| | - Thomas H Villers
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| | - Thomas M Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Vitaly V Kresin
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| |
Collapse
|
9
|
Efficient Formation of Size-Selected Clusters upon Pickup of Dopants into Multiply Charged Helium Droplets. Int J Mol Sci 2022; 23:ijms23073613. [PMID: 35408968 PMCID: PMC8998201 DOI: 10.3390/ijms23073613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Properties of clusters often depend critically on the exact number of atomic or molecular building blocks, however, most methods of cluster formation lead to a broad, size distribution and cluster intensity anomalies that are often designated as magic numbers. Here we present a novel approach of breeding size-selected clusters via pickup of dopants into multiply charged helium nanodroplets. The size and charge state of the initially undoped droplets and the vapor pressure of the dopant in the pickup region, determines the size of the dopant cluster ions that are extracted from the host droplets, via evaporation of the helium matrix in a collision cell filled with room temperature helium or via surface collisions. Size distributions of the selected dopant cluster ions are determined utilizing a high-resolution time of flight mass spectrometer. The comparison of the experimental data, with simulations taking into consideration the pickup probability into a shrinking He droplet due to evaporation during the pickup process, provides a simple explanation for the emergence of size distributions that are narrower than Poisson.
Collapse
|
10
|
Castillo-García A, Hauser AW, de Lara-Castells MP, Villarreal P. A Path Integral Molecular Dynamics Simulation of a Harpoon-Type Redox Reaction in a Helium Nanodroplet. Molecules 2021; 26:5783. [PMID: 34641327 PMCID: PMC8510490 DOI: 10.3390/molecules26195783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys.2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett.2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants.
Collapse
Affiliation(s)
| | - Andreas W. Hauser
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria;
| | | | - Pablo Villarreal
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, ES-28006 Madrid, Spain;
| |
Collapse
|
11
|
Ca + Ions Solvated in Helium Clusters. Molecules 2021; 26:molecules26123642. [PMID: 34203679 PMCID: PMC8232145 DOI: 10.3390/molecules26123642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
We present a combined experimental and theoretical investigation on Ca+ ions in helium droplets, HeNCa+. The clusters have been formed in the laboratory by means of electron-impact ionization of Ca-doped helium nanodroplets. Energies and structures of such complexes have been computed using various approaches such as path integral Monte Carlo, diffusion Monte Carlo and basin-hopping methods. The potential energy functions employed in these calculations consist of analytical expressions following an improved Lennard-Jones formula whose parameters are fine-tuned by exploiting ab initio estimations. Ion yields of HeNCa+ -obtained via high-resolution mass spectrometry- generally decrease with N with a more pronounced drop between N=17 and N=25, the computed quantum HeNCa+ evaporation energies resembling this behavior. The analysis of the energies and structures reveals that covering Ca+ with 17 He atoms leads to a cluster with one of the smallest energies per atom. As new atoms are added, they continue to fill the first shell at the expense of reducing its stability, until N=25, which corresponds to the maximum number of atoms in that shell. Behavior of the evaporation energies and radial densities suggests liquid-like cluster structures.
Collapse
|
12
|
Abstract
AbstractWe have measured depletion spectra of the heteronuclear (85Rb87Rb+) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive 12Σu+state of HeRb2+gives rise to a broad feature at 790 nm (12,650 cm−1); it exhibits a blueshift of 98 cm−1per added He atom. The transition into the bound 12Πustate of HeRb2+reveals vibrational structure with a band head at ≤ 15,522 cm−1, a harmonic constant of 26 cm−1, and a spin–orbit splitting of ≤ 183 cm−1. The band experiences an average redshift of − 38 cm−1per added He atom. Ab initio calculations rationalize the shape of the spectra and spectral shifts with respect to the number of helium atoms attached. For a higher number of solvating helium atoms, symmetric solvation on both ends of the Rb2+ion is predicted.
Collapse
|
13
|
González-Lezana T, Echt O, Gatchell M, Bartolomei M, Campos-Martínez J, Scheier P. Solvation of ions in helium. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1794585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, NH, USA
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Mandal S, Gopal R, Shcherbinin M, D'Elia A, Srinivas H, Richter R, Coreno M, Bapat B, Mudrich M, Krishnan SR, Sharma V. Penning spectroscopy and structure of acetylene oligomers in He nanodroplets. Phys Chem Chem Phys 2020; 22:10149-10157. [PMID: 32347252 DOI: 10.1039/d0cp00689k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Embedded atoms or molecules in a photoexcited He nanodroplet are well-known to be ionized through inter-atomic relaxation in a Penning process. In this work, we investigate the Penning ionization of acetylene oligomers occurring from the photoexcitation bands of He nanodroplets. In close analogy to conventional Penning electron spectroscopy by thermal atomic collisions, the n = 2 photoexcitation band plays the role of the metastable atomic 1s2s 3,1S He*. This facilitates electron spectroscopy of acetylene aggregates in the sub-Kelvin He environment, providing the following insight into their structure: the molecules in the dopant cluster are loosely bound van der Waals complexes rather than forming covalent compounds. In addition, this work reveals a Penning process stemming from the n = 4 band where charge-transfer from autoionized He in the droplets is known to be the dominant relaxation channel. This allows for excited states of the remnant dopant oligomer Penning-ions to be studied. Hence, we demonstrate Penning ionization electron spectroscopy of doped droplets as an effective technique for investigating dopant oligomers which are easily formed by attachment to the host cluster.
Collapse
Affiliation(s)
- S Mandal
- Indian Institute of Science Education and Research, Pune 411008, India
| | - R Gopal
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | | | - A D'Elia
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - H Srinivas
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy
| | - M Coreno
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy and Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, 34149 Trieste, Italy
| | - B Bapat
- Indian Institute of Science Education and Research, Pune 411008, India
| | - M Mudrich
- Aarhus University, 8000 Aarhus C, Denmark and Indian Institute of Technology Madras, Chennai 600036, India.
| | - S R Krishnan
- Indian Institute of Technology Madras, Chennai 600036, India.
| | - V Sharma
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| |
Collapse
|
15
|
Kranabetter L, Bersenkowitsch NK, Martini P, Gatchell M, Kuhn M, Laimer F, Schiller A, Beyer MK, Ončák M, Scheier P. Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs 2He. Phys Chem Chem Phys 2019; 21:25362-25368. [PMID: 31702748 PMCID: PMC7116336 DOI: 10.1039/c9cp04790e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm-1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.
Collapse
Affiliation(s)
- Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria. and Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Kuhn
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Arne Schiller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Ben Ltaief L, Shcherbinin M, Mandal S, Krishnan SR, LaForge AC, Richter R, Turchini S, Zema N, Pfeifer T, Fasshauer E, Sisourat N, Mudrich M. Charge Exchange Dominates Long-Range Interatomic Coulombic Decay of Excited Metal-Doped Helium Nanodroplets. J Phys Chem Lett 2019; 10:6904-6909. [PMID: 31625747 DOI: 10.1021/acs.jpclett.9b02726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atoms and molecules attached to rare-gas clusters are ionized by an interatomic autoionization process traditionally termed "Penning ionization" when the host cluster is resonantly excited. Here we analyze this process in the light of the interatomic Coulombic decay (ICD) mechanism, which usually contains a contribution from charge exchange at a short interatomic distance and one from virtual photon transfer at a large interatomic distance. For helium (He) nanodroplets doped with alkali metal atoms (Li, Rb), we show that long-range and short-range contributions to the interatomic autoionization can be clearly distinguished by detecting electrons and ions in coincidence. Surprisingly, ab initio calculations show that even for alkali metal atoms floating in dimples at a large distance from the nanodroplet surface, autoionization is largely dominated by charge-exchange ICD. Furthermore, the measured electron spectra manifest the ultrafast internal relaxation of the droplet mainly into the 1s2s1S state and partially into the metastable 1s2s3S state.
Collapse
Affiliation(s)
- L Ben Ltaief
- Department of Physics and Astronomy , Aarhus University , 8000 Aarhus C , Denmark
| | - M Shcherbinin
- Department of Physics and Astronomy , Aarhus University , 8000 Aarhus C , Denmark
| | - S Mandal
- Indian Institute of Science Education and Research , Pune 411008 , India
| | - S R Krishnan
- Department of Physics , Indian Institute of Technology , Madras, Chennai 600 036 , India
| | - A C LaForge
- Department of Physics , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - R Richter
- Elettra-Sincrotrone Trieste , Basovizza, 34149 Trieste , Italy
| | - S Turchini
- Istituto Struttura della Materia-CNR (ISM-CNR) , 00133 Roma , Italy
| | - N Zema
- Istituto Struttura della Materia-CNR (ISM-CNR) , 00133 Roma , Italy
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik , 69117 Heidelberg , Germany
| | - E Fasshauer
- Department of Physics and Astronomy , Aarhus University , 8000 Aarhus C , Denmark
| | - N Sisourat
- Sorbonne Université, CNRS , Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614 , F-75005 Paris , France
| | - M Mudrich
- Department of Physics and Astronomy , Aarhus University , 8000 Aarhus C , Denmark
| |
Collapse
|
17
|
Martini P, Goulart M, Kranabetter L, Gitzl N, Rasul B, Scheier P, Echt O. Charged Clusters of C 60 and Au or Cu: Evidence for Stable Sizes and Specific Dissociation Channels. J Phys Chem A 2019; 123:4599-4608. [PMID: 31062979 PMCID: PMC6545602 DOI: 10.1021/acs.jpca.9b02768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Indexed: 12/02/2022]
Abstract
We have doped helium nanodroplets with C60 and either gold or copper. Positively or negatively charged (C60) mM n± ions (M = Au or Cu) containing up to ≈10 fullerenes and ≈20 metal atoms are formed by electron ionization. The abundance distributions extracted from high-resolution mass spectra reveal several local anomalies. The sizes of the four most stable (C60) mAu n± ions identified in previous calculations for small values of m and n ( m ≤ 2 and n ≤ 2, or m = 1 and n = 3) agree with local maxima in the abundance distributions. Our data suggest the existence of several other relatively stable ions including (C60)2Au3± and (C60)3Au4-. Another feature, namely the absence of bare (C60)2±, confirms the prediction that (C60)2M± dissociates by loss of C60± rather than loss of M. The experimental data also reveal the preference for loss of (charged or neutral) C60 over loss of a metal atom from some larger species such as (C60)3M3+. In contrast to these similarities between Au and Cu, the abundance distributions of (C60)3Au n- and (C60)3Cu n- are markedly different. In this discussion, we emphasize the similarities and differences between anions and cations, and between gold and copper. Also noteworthy is the observation of dianions (C60) mAu n2- for m = 2, 4, and 6.
Collapse
Affiliation(s)
- Paul Martini
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Goulart
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Lorenz Kranabetter
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Norbert Gitzl
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Bilal Rasul
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Department
of Physics, University of Sargodha, 40100 Sargodha, Pakistan
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Olof Echt
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
18
|
Mahmoodi-Darian M, Lundberg L, Zöttl S, Scheier P, Echt O. Electron Attachment and Electron Ionization of Formic Acid Clusters Embedded in Helium Nanodroplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:787-795. [PMID: 30805883 PMCID: PMC6502787 DOI: 10.1007/s13361-018-02124-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 05/18/2023]
Abstract
We report the results of an experimental study of electron ionization of large helium nanodroplets doped with formic acid (FA). Several homologous series of cluster anions are observed, including [FAn-H]-, undissociated FAn-, and these ions complexed with one or more H2O. Some major features resemble those observed upon sputtering of frozen FA films but they differ significantly from results obtained by electron attachment to bare FA clusters in the gas phase. The FAn- and (H2O)[FAn-H]- series show abrupt onsets above n = 2 and 5, respectively. A prominent resonance in the anion yield occurs at 22.5 eV due to the formation of an intermediate He-*. Also observed are homologous series of [FA-H]- or [FA2-H]- complexed with helium. The cation chemistry is dominated by the production of protonated formic acid clusters, [FAnH]+, but various other homologous cluster ion series are observed as well. Graphical Abstract.
Collapse
Affiliation(s)
| | - Linnea Lundberg
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Samuel Zöttl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria.
| |
Collapse
|
19
|
Pérez de Tudela R, Martini P, Goulart M, Scheier P, Pirani F, Hernández-Rojas J, Bretón J, Ortiz de Zárate J, Bartolomei M, González-Lezana T, Hernández MI, Campos-Martínez J, Villarreal P. A combined experimental and theoretical investigation of Cs + ions solvated in He N clusters. J Chem Phys 2019; 150:154304. [PMID: 31005067 DOI: 10.1063/1.5092566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Solvation of Cs+ ions inside helium droplets has been investigated both experimentally and theoretically. On the one hand, mass spectra of doped helium clusters ionized with a crossed electron beam, HeNCs+, have been recorded for sizes up to N = 60. The analysis of the ratio between the observed peaks for each size N reveals evidences of the closure of the first solvation shell when 17 He atoms surround the alkali ion. On the other hand, we have obtained energies and geometrical structures of the title clusters by means of basin-hopping, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) methods. The analytical He-Cs+ interaction potential employed in our calculations is represented by the improved Lennard-Jones expression optimized on high level ab initio energies. The weakness of the existing interaction between helium and Cs+ in comparison with some other alkali ions such as Li+ is found to play a crucial role. Our theoretical findings confirm that the first solvation layer is completed at N = 17 and both evaporation and second difference energies obtained with the PIMC calculation seem to reproduce a feature observed at N = 12 for the experimental ion abundance. The analysis of the DMC probability distributions reveals the important contribution from the icosahedral structure to the overall configuration for He12Cs+.
Collapse
Affiliation(s)
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Goulart
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, 06123 Perugia, Italy
| | - Javier Hernández-Rojas
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, 38205 Tenerife, Spain
| | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, 38205 Tenerife, Spain
| | | | | | | | - Marta I Hernández
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| | | | - Pablo Villarreal
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
20
|
Ortiz de Zárate J, Bartolomei M, González-Lezana T, Campos-Martínez J, Hernández MI, Pérez de Tudela R, Hernández-Rojas J, Bretón J, Pirani F, Kranabetter L, Martini P, Kuhn M, Laimer F, Scheier P. Snowball formation for Cs + solvation in molecular hydrogen and deuterium. Phys Chem Chem Phys 2019; 21:15662-15668. [PMID: 31271179 DOI: 10.1039/c9cp02017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions of atomic cations with molecular hydrogen are of interest for a wide range of applications in hydrogen technologies. These interactions are fairly strong despite being non-covalent, hence one can ask whether hydrogen molecules would form dense, solid-like, solvation shells around the ion (snowballs) or rather a more weakly bound compound. In this work, the interactions between Cs+ and H2 are studied both experimentally and computationally. Isotopic substitution of H2 by D2 is also investigated. On the one hand, helium nanodroplets doped with cesium and hydrogen or deuterium are ionized by electron impact and the (H2/D2)nCs+ (up to n = 30) clusters formed are identified via mass spectrometry. On the other hand, a new analytical potential energy surface, based on ab initio calculations, is developed and used to study cluster energies and structures by means of classical and quantum-mechanical Monte Carlo methods. The most salient features of the measured ion abundances are remarkably mimicked by the computed evaporation energies, particularly for the clusters composed of deuterium. This result supports the reliability of the present potential energy surface and allows us to recommend its use in related systems. Clusters with either twelve H2 or D2 molecules stand out for their stability and quasi-rigid icosahedral structures. However, the first solvation shell involves thirteen or fourteen molecules for hydrogenated or deuterated clusters, respectively. This shell retains its internal structure when extra molecules are added to the second shell and is nearly solid-like, especially for the deuterated clusters. The role played by three-body induction interactions as well as the rotational degrees of freedom is analyzed and they are found to be significant (up to 15% and 18%, respectively) for the molecules belonging to the first solvation shell.
Collapse
Affiliation(s)
- Josu Ortiz de Zárate
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Marta I Hernández
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | | | - Javier Hernández-Rojas
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - José Bretón
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lorenz Kranabetter
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Martini
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Kuhn
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Felix Laimer
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Scheier
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Rastogi M, Leidlmair C, An der Lan L, Ortiz de Zárate J, Pérez de Tudela R, Bartolomei M, Hernández MI, Campos-Martínez J, González-Lezana T, Hernández-Rojas J, Bretón J, Scheier P, Gatchell M. Lithium ions solvated in helium. Phys Chem Chem Phys 2018; 20:25569-25576. [PMID: 30112553 PMCID: PMC6194493 DOI: 10.1039/c8cp04522d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023]
Abstract
We report on a combined experimental and theoretical study of Li+ ions solvated by up to 50 He atoms. The experiments show clear enhanced abundances associated with HenLi+ clusters where n = 2, 6, 8, and 14. We find that classical methods, e.g. basin-hopping (BH), give results that qualitatively agree with quantum mechanical methods such as path integral Monte Carlo, diffusion Monte Carlo and quantum free energy, regarding both energies and the solvation structures that are formed. The theory identifies particularly stable structures for n = 4, 6 and 8 which line up with some of the most abundant features in the experiments.
Collapse
Affiliation(s)
- Monisha Rastogi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Christian Leidlmair
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Lukas An der Lan
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Josu Ortiz de Zárate
- Instituto de Física Fundamental, IFF-CSIC
, Serrano 123
,
28006 Madrid
, Spain
.
| | | | | | - Marta I. Hernández
- Instituto de Física Fundamental, IFF-CSIC
, Serrano 123
,
28006 Madrid
, Spain
.
| | - José Campos-Martínez
- Instituto de Física Fundamental, IFF-CSIC
, Serrano 123
,
28006 Madrid
, Spain
.
| | | | | | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna
,
38205 Tenerife
, Spain
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
- Department of Physics, Stockholm University
,
106 91 Stockholm
, Sweden
| |
Collapse
|
22
|
Shcherbinin M, LaForge AC, Hanif M, Richter R, Mudrich M. Penning Ionization of Acene Molecules by Helium Nanodroplets. J Phys Chem A 2018; 122:1855-1860. [DOI: 10.1021/acs.jpca.7b12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Shcherbinin
- Department
of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - A. C. LaForge
- Physikalisches
Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - M. Hanif
- Department
of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - R. Richter
- Elettra Sincrotrone, 34149 Basovizza, Trieste, Italy
| | - M. Mudrich
- Department
of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Coppens F, von Vangerow J, Barranco M, Halberstadt N, Stienkemeier F, Pi M, Mudrich M. Desorption dynamics of RbHe exciplexes off He nanodroplets induced by spin-relaxation. Phys Chem Chem Phys 2018; 20:9309-9320. [DOI: 10.1039/c8cp00482j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doped He nanodroplets are ideal model systems to study elementary photophysical processes in hetero-nanostructures. Here we study the formation of free RbHe exciplexes from laser-excited Rb-doped He nanodroplets.
Collapse
Affiliation(s)
- François Coppens
- Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, Université Toulouse 3- Paul Sabatier, CNRS UMR 5589
- F-31062 Toulouse Cedex 09
- France
| | | | - Manuel Barranco
- Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, Université Toulouse 3- Paul Sabatier, CNRS UMR 5589
- F-31062 Toulouse Cedex 09
- France
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona
- 08028 Barcelona
| | - Nadine Halberstadt
- Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, Université Toulouse 3- Paul Sabatier, CNRS UMR 5589
- F-31062 Toulouse Cedex 09
- France
| | | | - Martí Pi
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona
- 08028 Barcelona
- Spain
- Departament FQA, Facultat de Física, Universitat de Barcelona
- 08028 Barcelona
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University
- Aarhus 8000 C
- Denmark
| |
Collapse
|
24
|
Ancilotto F, Barranco M, Coppens F, Eloranta J, Halberstadt N, Hernando A, Mateo D, Pi M. Density functional theory of doped superfluid liquid helium and nanodroplets. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1351672] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Francesco Ancilotto
- Dipartimento di Fisica e Astronomia ‘Galileo Galilei’ and CNISM, Università di Padova, Padova, Italy
- CNR-IOM Democritos, Trieste, Italy
| | - Manuel Barranco
- Facultat de Física, Departament FQA, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
- Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, Université Toulouse 3 and CNRS, Toulouse Cedex 09, France
| | - François Coppens
- Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, Université Toulouse 3 and CNRS, Toulouse Cedex 09, France
| | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA, USA
| | - Nadine Halberstadt
- Laboratoire des Collisions, Agrégats et Réactivité, IRSAMC, Université Toulouse 3 and CNRS, Toulouse Cedex 09, France
| | - Alberto Hernando
- Social Thermodynamics Applied Research (SThAR), EPFL Innovation Park, Lausanne, Switzerland
| | - David Mateo
- Applied Complexity Group, Singapore University of Technology and Design, Singapore, Singapore
| | - Martí Pi
- Facultat de Física, Departament FQA, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Renzler M, Daxner M, Kranabetter L, Kaiser A, Hauser AW, Ernst WE, Lindinger A, Zillich R, Scheier P, Ellis AM. Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets. J Chem Phys 2017; 145:181101. [PMID: 27846692 DOI: 10.1063/1.4967405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alkali metal atoms and small alkali clusters are classic heliophobes and when in contact with liquid helium they reside in a dimple on the surface. Here we show that alkalis can be induced to submerge into liquid helium when a highly polarizable co-solute, C60, is added to a helium nanodroplet. Evidence is presented that shows that all sodium clusters, and probably single Na atoms, enter the helium droplet in the presence of C60. Even clusters of cesium, an extreme heliophobe, dissolve in liquid helium when C60 is added. The sole exception is atomic Cs, which remains at the surface.
Collapse
Affiliation(s)
- Michael Renzler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Matthias Daxner
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Alexander Kaiser
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andreas W Hauser
- Institut für Experimentalphysik, Technische Universität Graz, Petergasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institut für Experimentalphysik, Technische Universität Graz, Petergasse 16, A-8010 Graz, Austria
| | - Albrecht Lindinger
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Robert Zillich
- Institut für Theoretische Physik, Johannes Kepler Universität, A-4040 Linz, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andrew M Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
26
|
Renzler M, Ralser S, Kranabetter L, Barwa E, Scheier P, Ellis AM. Observation of stable HO4(+) and DO4(+) ions from ion-molecule reactions in helium nanodroplets. Phys Chem Chem Phys 2016; 18:13169-72. [PMID: 27140863 DOI: 10.1039/c6cp01895e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-molecule reactions between clusters of H2/D2 and O2 in liquid helium nanodroplets were initiated by electron-induced ionization (at 70 eV). Reaction products were detected by mass spectrometry and can be explained by a primary reaction channel involving proton transfer from H3(+) or H3(+)(H2)n clusters and their deuterated equivalents. Very little HO2(+) is seen from the reaction of H3(+) with O2, which is attributed to an efficient secondary reaction between HO2(+) and H2. On the other hand HO4(+) is the most abundant product from the reaction of H3(+) with oxygen dimer, (O2)2. The experimental data suggest that HO4(+) is a particularly stable ion and this is consistent with recent theoretical studies of this ion.
Collapse
Affiliation(s)
- Michael Renzler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
27
|
Krasnokutski S, Kuhn M, Kaiser A, Mauracher A, Renzler M, Bohme DK, Scheier P. Building Carbon Bridges on and between Fullerenes in Helium Nanodroplets. J Phys Chem Lett 2016; 7:1440-1445. [PMID: 27043313 PMCID: PMC4845062 DOI: 10.1021/acs.jpclett.6b00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 05/29/2023]
Abstract
We report the observation of sequential encounters of fullerenes with C atoms in an extremely cold environment. Experiments were performed with helium droplets at 0.37 K doped with C60 molecules and C atoms derived from a novel, pure source of C atoms. Very high-resolution mass spectra revealed the formation of carbenes of the type C60(C:)n with n up to 6. Bridge-type bonding of the C adatoms to form the known dumbbell C60═C═C60 also was observed. Density functional theory calculations were performed that elucidated the carbene character of the C60(C:)n species and their structures. Mass spectra taken in the presence of water impurities and in separate experiments with added H2 also revealed the formation of the adducts C60C(n)(H2O)n and C60C(n)(H2)n probably by H-OH and H-H bond insertion, respectively, and nonreactivity for the dumbell. So C adatoms that form carbenes C60(C:)n can endow pristine C60 with a higher chemical reactivity.
Collapse
Affiliation(s)
- Serge
A. Krasnokutski
- Laboratory
Astrophysics Group of the Max Planck Institute
for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena, Germany
| | - Martin Kuhn
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Alexander Kaiser
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andreas Mauracher
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Renzler
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Diethard K. Bohme
- Department
of Chemistry, York University, 4700 Keele Street, Toronto M3J 1P3, Ontario, Canada
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
28
|
Renzler M, Harnisch M, Daxner M, Kranabetter L, Kuhn M, Scheier P, Echt O. Fission of multiply charged alkali clusters in helium droplets - approaching the Rayleigh limit. Phys Chem Chem Phys 2016; 18:10623-9. [PMID: 27035406 DOI: 10.1039/c6cp00764c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electron ionization of helium droplets doped with sodium, potassium or cesium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are Na9(2+), K11(2+), and Cs9(2+); they are a factor two to three smaller than reported previously. The size of sodium and potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as Cs19(3+) are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.
Collapse
Affiliation(s)
- Michael Renzler
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
29
|
Thaler P, Volk A, Knez D, Lackner F, Haberfehlner G, Steurer J, Schnedlitz M, Ernst WE. Synthesis of nanoparticles in helium droplets-A characterization comparing mass-spectra and electron microscopy data. J Chem Phys 2016; 143:134201. [PMID: 26450307 DOI: 10.1063/1.4932182] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Micrometer sized helium droplets provide an extraordinary environment for the growth of nanoparticles. The method promises great potential for the preparation of core-shell particles as well as one-dimensional nanostructures, which agglomerate along quantum vortices, without involving solvents, ligands, or additives. Using a new apparatus, which enables us to record mass spectra of heavy dopant clusters (>10(4) amu) and to produce samples for transmission electron microscopy simultaneously, we synthesize bare and bimetallic nanoparticles consisting of various materials (Au, Ni, Cr, and Ag). We present a systematical study of the growth process of clusters and nanoparticles inside the helium droplets, which can be described with a simple theoretical model.
Collapse
Affiliation(s)
- Philipp Thaler
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Alexander Volk
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Daniel Knez
- Institute for Electron Microscopy and Nanoanalysis & Graz Centre for Electron Microscopy, TU Graz, Steyrergasse 17, A-8010 Graz, Austria
| | - Florian Lackner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Georg Haberfehlner
- Institute for Electron Microscopy and Nanoanalysis & Graz Centre for Electron Microscopy, TU Graz, Steyrergasse 17, A-8010 Graz, Austria
| | - Johannes Steurer
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Martin Schnedlitz
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
30
|
Ralser S, Kaiser A, Probst M, Postler J, Renzler M, Bohme DK, Scheier P. Experimental evidence for the influence of charge on the adsorption capacity of carbon dioxide on charged fullerenes. Phys Chem Chem Phys 2016; 18:3048-55. [DOI: 10.1039/c5cp06587a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The adsorption of CO2 is sensitive to charge on a capturing model carbonaceous surface, such as C60 fullerenes.
Collapse
Affiliation(s)
- Stefan Ralser
- Institut für Ionenphysik und Angewandte Physik
- Leopold-Franzens-Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Alexander Kaiser
- Institut für Ionenphysik und Angewandte Physik
- Leopold-Franzens-Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Michael Probst
- Institut für Ionenphysik und Angewandte Physik
- Leopold-Franzens-Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Johannes Postler
- Institut für Ionenphysik und Angewandte Physik
- Leopold-Franzens-Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Michael Renzler
- Institut für Ionenphysik und Angewandte Physik
- Leopold-Franzens-Universität Innsbruck
- 6020 Innsbruck
- Austria
| | | | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik
- Leopold-Franzens-Universität Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
31
|
Park S, Kim B, Kwon Y. Anisotropic superfluidity of (4)He on a C36 fullerene molecule. J Chem Phys 2015; 143:104311. [PMID: 26374039 DOI: 10.1063/1.4930857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have performed path-integral Monte Carlo calculations to study the adsorption of (4)He atoms on two different C36 isomers with the D6h and the D2d symmetries. The radial (4)He density distributions reveal layer-by-layer growth with the first layer being located at a distance of ∼5.5 Å from the C36 molecular center and the second layer at ∼8.3 Å. From the angular density profiles of (4)He, we find different quantum states as the number of (4)He adatoms N varies. For N = 20, we observe commensurate solid structures on both D6h and D2d isomers, where each of 8 hexagon and 12 pentagon centers of the fullerene surfaces is occupied by a single (4)He atom. The second-layer promotion starts beyond N = 38 on both isomers, where a compressible incommensurate structure is observed on the D6h isomer and another commensurate structure on D2d. Between N = 20 and N = 38, the (4)He monolayer on D6h shows several distinct rings of delocalized (4)He atoms along with strongly anisotropic superfluid responses at low temperatures, while isotropic but weak superfluid responses are observed in the (4)He layer on D2d.
Collapse
Affiliation(s)
- Sungjin Park
- Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701, South Korea
| | - Byeongjoon Kim
- Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701, South Korea
| | - Yongkyung Kwon
- Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
32
|
Postler J, Renzler M, Kaiser A, Huber S, Probst M, Scheier P, Ellis AM. Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO) 3NO) in Liquid Helium Nanodroplets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:20917-20922. [PMID: 26401190 PMCID: PMC4568542 DOI: 10.1021/acs.jpcc.5b05260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Electron addition to cobalt tricarbonyl nitrosyl (Co(CO3NO) and its clusters has been explored in helium nanodroplets. Anions were formed by adding electrons with controlled energies, and reaction products were identified by mass spectrometry. Dissociative electron attachment (DEA) to the Co(CO)3NO monomer gave reaction products similar to those reported in earlier gas phase experiments. However, loss of NO was more prevalent than loss of CO, in marked contrast to the gas phase. Since the Co-N bond is significantly stronger than the Co-C bond, this preference for NO loss must be driven by selective reaction dynamics at low temperature. For [Co(CO)3NO] N clusters, the DEA chemistry is similar to that of the monomer, but the anion yields as a function of electron energy show large differences, with the relatively sharp resonances of the monomer being replaced by broad profiles peaking at much higher electron energies. A third experiment involved DEA of Co(CO)3NO on a C60 molecule in an attempt to simulate the effect of a surface. Once again, broad ion yield curves are seen, but CO loss now becomes the most probable reaction channel. The implication of these findings for understanding focused electron beam induced deposition of cobalt is described.
Collapse
Affiliation(s)
- Johannes Postler
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Renzler
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Alexander Kaiser
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Stefan
E. Huber
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Probst
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andrew M. Ellis
- Department
of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, U. K.
| |
Collapse
|
33
|
Renzler M, Daxner M, Weinberger N, Denifl S, Scheier P, Echt O. On subthreshold ionization of helium droplets, ejection of He(+), and the role of anions. Phys Chem Chem Phys 2015; 16:22466-70. [PMID: 25230760 DOI: 10.1039/c4cp03236e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of ionization of helium droplets has been investigated in numerous reports but one observation has not found a satisfactory explanation: How are He(+) ions formed and ejected from undoped droplets at electron energies below the ionization threshold of the free atom? Does this path exist at all? A measurement of the ion yields of He(+) and He2(+) as a function of electron energy, electron emission current, and droplet size reveals that metastable He*(-) anions play a crucial role in the formation of free He(+) at subthreshold energies. The proposed model is testable.
Collapse
Affiliation(s)
- Michael Renzler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
34
|
Harnisch M, Weinberger N, Denifl S, Scheier P, Echt O. Helium Droplets Doped with Sulfur and C 60. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:10919-10924. [PMID: 26045732 PMCID: PMC4450369 DOI: 10.1021/jp510870x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Indexed: 05/29/2023]
Abstract
Clusters of sulfur are grown by passing superfluid helium nanodroplets through a pickup cell filled with sulfur vapor. In some experiments the droplets are codoped with C60. The doped droplets are collided with energetic electrons and the abundance distributions of positively and negatively charged cluster ions are recorded. We report, specifically, distributions of S m+, S m-, and C60S m- containing up to 41 sulfur atoms. We also observe complexes of sulfur cluster anions with helium; distributions are presented for He n S m- with n ≤ 31 and m ≤ 3. The similarity between anionic and cationic C60S m± spectra is in striking contrast to the large differences between spectra of S m+ and S m-.
Collapse
Affiliation(s)
- Martina Harnisch
- Institut
für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Nikolaus Weinberger
- Institut
für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut
für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Olof Echt
- Institut
für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Department
of Physics, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
35
|
Ralser S, Postler J, Harnisch M, Ellis AM, Scheier P. Extracting cluster distributions from mass spectra: IsotopeFit. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 379:194-199. [PMID: 26109907 PMCID: PMC4461193 DOI: 10.1016/j.ijms.2015.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 05/16/2023]
Abstract
The availability of high resolution mass spectrometry in the study of atomic and molecular clusters opens up challenges for the interpretation of the data. In complex systems each resolved mass peak may contain contributions from multiple species because of the isotope structure of constituent elements and because a multitude of different types of clusters with different compositions are present. A computational procedure which can help to identify a specific cluster from this complex dataset and quantify its relative abundance would be extremely helpful to many who work in this field. Here some new software designed for this purpose, known as IsotopeFit, is described.
Collapse
Affiliation(s)
- Stefan Ralser
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Johannes Postler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Martina Harnisch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Andrew M. Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
- Corresponding author. Tel.: +43 512 507 52660; fax: +43 512 507 2932.
| |
Collapse
|
36
|
Mauracher A, Daxner M, Huber SE, Postler J, Renzler M, Denifl S, Scheier P, Ellis AM. The interaction of He− with fullerenes. J Chem Phys 2015; 142:104306. [DOI: 10.1063/1.4913956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Mauracher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Matthias Daxner
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Stefan E. Huber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Johannes Postler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Renzler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andrew M. Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
37
|
Daxner M, Denifl S, Scheier P, Ellis AM. Electron-driven self-assembly of salt nanocrystals in liquid helium. Angew Chem Int Ed Engl 2014; 53:13528-31. [PMID: 25378098 PMCID: PMC4502967 DOI: 10.1002/anie.201409465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 11/08/2022]
Abstract
The self-assembly of salt nanocrystals from chemical reactions inside liquid helium is reported for the first time. Reaction is initiated by an electron impacting a helium nanodroplet containing sodium atoms and SF6 molecules, leading to preferential production of energetically favorable structures based on the unit cell of crystalline NaF. These favorable structures are observed as magic number ions (anomalously intense peaks) in mass spectra and are seen in both cationic and anionic channels in mass spectra, for example, (NaF)n Na(+) and (NaF)n F(-) . In the case of anions the self-assembly is not directly initiated by electrons: the dominant process involves resonant electron-induced production of metastable electronically excited He(-) anions, which then initiate anionic chemistry by electron transfer.
Collapse
Affiliation(s)
- Matthias Daxner
- Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstrasse 25, 6020 Innsbruck (Austria)
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstrasse 25, 6020 Innsbruck (Austria)
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstrasse 25, 6020 Innsbruck (Austria)
| | - Andrew M Ellis
- Department of Chemistry, University of Leicester, University Road, LeicesterLE1 7RH (UK)
| |
Collapse
|
38
|
Daxner M, Denifl S, Scheier P, Ellis AM. Electron-Driven Self-Assembly of Salt Nanocrystals in Liquid Helium. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Bartl P, Leidlmair C, Denifl S, Scheier P, Echt O. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases. J Phys Chem A 2014; 118:8050-9. [PMID: 24128371 PMCID: PMC4166691 DOI: 10.1021/jp406540p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/04/2013] [Indexed: 11/30/2022]
Abstract
Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.
Collapse
Affiliation(s)
- Peter Bartl
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Christian Leidlmair
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
40
|
|
41
|
Mauracher A, Daxner M, Postler J, Huber S, Denifl S, Scheier P, Toennies JP. Detection of Negative Charge Carriers in Superfluid Helium Droplets: The Metastable Anions He *- and He 2*-. J Phys Chem Lett 2014; 5:2444-2449. [PMID: 25068008 PMCID: PMC4106244 DOI: 10.1021/jz500917z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/20/2014] [Indexed: 05/13/2023]
Abstract
Helium droplets provide the possibility to study phenomena at the very low temperatures at which quantum mechanical effects are more pronounced and fewer quantum states have significant occupation probabilities. Understanding the migration of either positive or negative charges in liquid helium is essential to comprehend charge-induced processes in molecular systems embedded in helium droplets. Here, we report the resonant formation of excited metastable atomic and molecular helium anions in superfluid helium droplets upon electron impact. Although the molecular anion is heliophobic and migrates toward the surface of the helium droplet, the excited metastable atomic helium anion is bound within the helium droplet and exhibits high mobility. The atomic anion is shown to be responsible for the formation of molecular dopant anions upon charge transfer and thus, we clarify the nature of the previously unidentified fast exotic negative charge carrier found in bulk liquid helium.
Collapse
Affiliation(s)
- Andreas Mauracher
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Matthias Daxner
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Johannes Postler
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Stefan
E. Huber
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria
- P. Scheier. E-mail: . Phone: +43 512 507 52260. Fax: +43 512 507
2922
| | - J. Peter Toennies
- Max
Planck Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077 Göttingen, Germany
- J. P. Toennies.
E-mail: . Phone: +49 551 5176
600.
Fax: +49 551 5176 575
| |
Collapse
|
42
|
Daxner M, Denifl S, Scheier P, Echt O. Doubly charged CO 2 clusters formed by ionization of doped helium nanodroplets. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2014; 365-366:200-205. [PMID: 25844051 PMCID: PMC4375666 DOI: 10.1016/j.ijms.2014.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/05/2014] [Accepted: 01/22/2014] [Indexed: 06/04/2023]
Abstract
Helium nanodroplets are doped with carbon dioxide and ionized by electrons. Doubly charged cluster ions are, for the first time, identified based on their characteristic patterns of isotopologues. Thanks to the high mass resolution, large dynamic range, and a novel method to eliminate contributions from singly charged ions from the mass spectra, we are able to observe doubly charged cluster ions that are smaller than the ones reported in the past. The likely mechanism by which doubly charged ions are formed in doped helium droplets is discussed.
Collapse
Affiliation(s)
- Matthias Daxner
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
43
|
Zöttl S, Kaiser A, Daxner M, Goulart M, Mauracher A, Probst M, Hagelberg F, Denifl S, Scheier P, Echt O. Ordered phases of ethylene adsorbed on charged fullerenes and their aggregates. CARBON 2014; 69:206-220. [PMID: 25843960 PMCID: PMC4375791 DOI: 10.1016/j.carbon.2013.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of [Formula: see text] measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature.
Collapse
Affiliation(s)
- Samuel Zöttl
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Alexander Kaiser
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Matthias Daxner
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Marcelo Goulart
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Andreas Mauracher
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Michael Probst
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Frank Hagelberg
- Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
44
|
Tolbatov I, Bartl P, Yurkovich J, Scheier P, Chipman DM, Denifl S, Ptasinska S. Monocarbon cationic cluster yields from N2/CH4 mixtures embedded in He nanodroplets and their calculated binding energies. J Chem Phys 2014; 140:034316. [PMID: 25669388 DOI: 10.1063/1.4861663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of monocarbon cluster ions has been investigated by electron ionization mass spectrometry of cold helium nanodroplets doped with nitrogen/methane mixtures. Ion yields for two groups of clusters, CHmN2(+) or CHmN4(+), were determined for mixtures with different molecular ratios of CH4. The possible geometrical structures of these clusters were analyzed using electronic structure computations. Little correlation between the ion yields and the associated binding energies has been observed indicating that in most cases kinetic control is more important than thermodynamic control for forming the clusters.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter Bartl
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - James Yurkovich
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Daniel M Chipman
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
45
|
Yang S, Ellis AM, Spence D, Feng C, Boatwright A, Latimer E, Binns C. Growing metal nanoparticles in superfluid helium. NANOSCALE 2013; 5:11545-11553. [PMID: 24107922 DOI: 10.1039/c3nr04003h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Helium droplets provide a cold and confined environment where atomic and/or molecular dopants can aggregate into clusters and nanoparticles. In particular, the sequential addition of different materials to helium droplets can lead to the formation of a wide range of nanoparticles, including core-shell nanoparticles, which can then be deposited onto a surface. Here we briefly discuss the fundamental properties of helium droplets and then address their implications for the formation of clusters and nanoparticles. Several key experiments on atomic and molecular clusters will be highlighted and new results obtained for nanoparticles formed in this way will be presented. Finally, the versatility, the limitations and new possibilities provided by superfluid helium droplets in nanoscience and nanotechnology will be addressed.
Collapse
Affiliation(s)
- Shengfu Yang
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Boatwright A, Feng C, Spence D, Latimer E, Binns C, Ellis AM, Yang S. Helium droplets: a new route to nanoparticles. Faraday Discuss 2013; 162:113-24. [PMID: 24015579 DOI: 10.1039/c2fd20136d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Helium droplets are large helium clusters that are capable of picking up individual atoms and molecules and show promise as nano-reactors for the synthesis of unique nanoparticles. In particular, the sequential addition of materials of different types offers opportunities for the fabrication of novel core-shell nanoparticles that cannot be synthesised by other methods. To exploit this potential, here we have carried out a mass spectrometry investigation on metal clusters in order to establish how to control the doping conditions for the fabrication of nanoparticles in superfluid helium droplets, and in particular to develop a recipe to control core and shell ratios in the case of core-shell nanoparticles. Several types of metal nanoparticles, including pure Ag, Au and Ni nanoparticles, and Ag/Au and Ni/Au core-shell systems, have been synthesised and then removed from the helium droplets by deposition on substrates for ex situ investigations using high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM imaging has been used to estimate the sizes of nanoparticles, which show a bimodel distribution under the conditions employed. We also present the first evidence that crystalline metal nanoparticles are formed by self-assembly of metal atoms in helium droplets. The XPS investigation of Ni/Au core-shell nanoparticles shows an absence of any Au 4f core-level shift that would occur on alloying of Au and Ni, which provides the first direct evidence for the successful formation of core-shell nanoparticles using superfluid helium droplets.
Collapse
Affiliation(s)
- Adrian Boatwright
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Kaiser A, Leidlmair C, Bartl P, Zöttl S, Denifl S, Mauracher A, Probst M, Scheier P, Echt O. Adsorption of hydrogen on neutral and charged fullerene: experiment and theory. J Chem Phys 2013; 138:074311. [PMID: 23445013 DOI: 10.1063/1.4790403] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)(n)HC(m)(+) where m = 60 or 70. Another series of even-numbered ions, (H2)(n)C(m)(+), is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)(n)(+) is barely detectable. The ion series (H2)(n)HC(m)(+) and (H2)(n)C(m)(+) exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60(+); the corresponding value for C70(+) is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60(+) and (H2)2C60(+), and slightly above 70 meV for H2HC60(+) and (H2)2HC60(+). The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well.
Collapse
Affiliation(s)
- A Kaiser
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bartl P, Denifl S, Scheier P, Echt O. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy. Phys Chem Chem Phys 2013; 15:16599-604. [PMID: 23958826 DOI: 10.1039/c3cp52550c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.
Collapse
Affiliation(s)
- Peter Bartl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
49
|
Lackner F, Poms J, Krois G, Pototschnig JV, Ernst WE. Spectroscopy of lithium atoms and molecules on helium nanodroplets. J Phys Chem A 2013; 117:11866-73. [PMID: 23895106 PMCID: PMC3839407 DOI: 10.1021/jp4030238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
report on the spectroscopic investigation of lithium atoms and
lithium dimers in their triplet manifold on the surface of helium
nanodroplets (HeN). We present the excitation spectrum
of the 3p ← 2s and 3d ← 2s two-photon transitions for
single Li atoms on HeN. The atoms are excited from the
2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic
molecular substates. Excitation spectra are recorded by resonance
enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy,
which allows an investigation of the exciplex (Li*–Hem, m = 1–3) formation process
in the Li–HeN system. Electronic states are shifted
and broadened with respect to free atom states, which is explained
within the pseudodiatomic model. The assignment is assisted by theoretical
calculations, which are based on the Orsay–Trento density functional
where the interaction between the helium droplet and the lithium atom
is introduced by a pairwise additive approach. When a droplet is doped
with more than one alkali atom, the fragility of the alkali–HeN systems leads preferably to the formation of high-spin molecules
on the droplets. We use this property of helium nanodroplets for the
preparation of Li dimers in their triplet ground state (13Σu+).
The excitation spectrum of the 23Πg(ν′
= 0–11) ← 13Σu+(ν″ = 0) transition is presented.
The interaction between the molecule and the droplet manifests in
a broadening of the transitions with a characteristic asymmetric form.
The broadening extends to the blue side of each vibronic level, which
is caused by the simultaneous excitation of the molecule and vibrations
of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope
mixed 6Li7Li molecules on the droplet surface.
By using REMPI-TOF mass spectroscopy, isotope-dependent effects could
be studied.
Collapse
Affiliation(s)
- Florian Lackner
- Institute of Experimental Physics, Graz University of Technology , Petersgasse 16, A-8010 Graz, Austria/EU
| | | | | | | | | |
Collapse
|
50
|
Echt O, Kaiser A, Zöttl S, Mauracher A, Denifl S, Scheier P. Adsorption of Polar and Nonpolar Molecules on Isolated Cationic C 60 , C 70 , and Their Aggregates. Chempluschem 2013; 78:910-920. [PMID: 31986748 DOI: 10.1002/cplu.201300198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/26/2013] [Indexed: 11/10/2022]
Abstract
Physisorption on graphite, graphene, nanotubes, and other graphitic structures has been the subject of numerous studies, partly driven by interest in the nature of order in two-dimensional systems, their phase transitions, and the use of graphitic scaffolds for reversible storage of hydrogen at high volumetric density and low mass. In contrast, physisorption on individual fullerenes or small aggregates of fullerenes has remained largely unexplored, last but not least, because of technical challenges. A summary of recent progress in identifying specific adsorption sites on positively charged C60 , C70 , and their aggregates is given in this Minireview. Adsorption energies and storage capacities for helium, hydrogen, methane, oxygen, nitrogen, water, and ammonia are determined. Mass spectrometric data reveal the formation of a commensurate phase in which all hollow sites of C60 or C70 are occupied. This phase is identified for all nonpolar molecules, including oxygen, which does not form a commensurate phase on planar graphite. The polar molecules, on the other hand, do not wet fullerenes and they do not form this commensurate phase. A hierarchy of other distinct adsorption sites are identified for nonpolar molecules, namely, groove sites for fullerene dimers and beyond, and dimple sites for fullerene trimers and beyond. Furthermore, evidence is presented for the preferential adsorption of hydrogen and methane in registered sites on fullerene dimers. The interpretation of experimental data that merely count the number of preferred adsorption sites is aided by molecular dynamics simulations, which utilize interaction potentials derived from ab initio calculations to determine adsorption energies.
Collapse
Affiliation(s)
- Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Techniker Strasse 25, A-6020 Innsbruck (Austria).,Department of Physics, University of New Hampshire, Durham, NH 03824 (USA)
| | - Alexander Kaiser
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Techniker Strasse 25, A-6020 Innsbruck (Austria)
| | - Samuel Zöttl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Techniker Strasse 25, A-6020 Innsbruck (Austria)
| | - Andreas Mauracher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Techniker Strasse 25, A-6020 Innsbruck (Austria)
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Techniker Strasse 25, A-6020 Innsbruck (Austria)
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Techniker Strasse 25, A-6020 Innsbruck (Austria)
| |
Collapse
|