1
|
Marjollet A, Inhester L, Welsch R. Initial state-selected scattering for the reactions H + CH4/CHD3 and F + CHD3 employing ring polymer molecular dynamics. J Chem Phys 2022; 156:044101. [DOI: 10.1063/5.0076216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Marjollet
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - L. Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Welsch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
2
|
Marjollet A, Welsch R. Nuclear quantum effects in state-selective scattering from ring polymer molecular dynamics. J Chem Phys 2020; 152:194113. [DOI: 10.1063/5.0004179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adrien Marjollet
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Ralph Welsch
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Sáez-Rábanos V, Verdasco JE, Aoiz FJ, Herrero VJ. Influence of vibration in the reactive scattering of D + MuH: the effect of dynamical bonding. Phys Chem Chem Phys 2016; 18:13530-7. [PMID: 27138743 PMCID: PMC4931899 DOI: 10.1039/c6cp01305h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dynamics of the D + MuH(v = 1) reaction has been investigated using time-independent quantum mechanical calculations. The total reaction cross sections and rate coefficients have been calculated for the two exit channels of the reaction leading, respectively, to DMu + H and DH + Mu. Over the 100-1000 K temperature range investigated the rate coefficients for the DMu + H channel are of the order of 10(-10) cm(3) s(-1) and those for the DH + Mu channel vary between 1 × 10(-12) and 8 × 10(-11) cm(3) s(-1). These results point to a virtually barrierless reaction for the DMu + H channel and to the presence of a comparatively small barrier for the DH + Mu channel and are consistent with the profiles of their respective collinear vibrationally adiabatic potentials (VAPs). The effective barrier in the VAP of the DH + Mu channel is located in the reactant valley and, consequently, translation is found to be more efficient than vibration for the promotion of the reaction over a large energy interval in the post threshold region. Below this barrier, the DH + Mu channel can be accessible through an indirect mechanism implying crossing from the DMu + H pathway. The most salient feature found in the present study is revealed in the total reaction cross section for the DMu + H channel, which shows a sharp resonance caused by the presence of a deep well in the vibrationally adiabatic potential. This well has a dynamical origin, reminiscent of that found recently in the vibrationally bonded BrMuBr complex [Fleming, et al., Angew. Chem., Int. Ed., 2014, 53, 1], and is due to the stabilizing effect of the light Mu atom oscillating between the heavier H and D isotopes and to the bond softening associated with vibrational excitation of MuH.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales. E.T.S. de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
4
|
Arseneau DJ, Fleming DG, Li Y, Li J, Suleimanov YV, Guo H. Rate Coefficient for the 4Heμ + CH4 Reaction at 500 K: Comparison between Theory and Experiment. J Phys Chem B 2015; 120:1641-8. [DOI: 10.1021/acs.jpcb.5b08368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donald J. Arseneau
- TRIUMF
and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 2Z1, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Fleming DG, Cottrell SP, McKenzie I, Ghandi K. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance. Phys Chem Chem Phys 2015; 17:19901-10. [DOI: 10.1039/c5cp02576a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate constant for the slow Mu + propane abstraction reaction has been determined by diamagnetic RF resonance. The curves show simulations of the μSR resonance signal. This study provides an important new test of reaction rate theory for the alkanes.
Collapse
Affiliation(s)
- Donald G. Fleming
- TRIUMF Laboratory and Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Iain McKenzie
- ISIS Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
- CMMS Facility
| | - Khashayar Ghandi
- Department of Chemistry and Biochemistry
- Mount Allison University
- Sackville
- Canada
| |
Collapse
|
6
|
Herráez-Aguilar D, Jambrina PG, Menéndez M, Aldegunde J, Warmbier R, Aoiz FJ. The effect of the reactant internal excitation on the dynamics of the C(+) + H2 reaction. Phys Chem Chem Phys 2014; 16:24800-12. [PMID: 25317975 DOI: 10.1039/c4cp03289f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have performed a dynamical study of the endothermic and barrierless C(+) + H2((1)Σg(+)) → CH(+)((1)Σg(+)) + H reaction for different initial rotational states of the H2(v = 0) and H2(v = 1) manifolds. The calculations have been carried out using quasiclassical trajectories and the Gaussian binning methodology on a recent potential energy surface [R. Warmbier and R. Schneider, Phys. Chem. Chem. Phys., 2011, 13, 10285]. Both state-selected integral cross sections as a function of the collision energy and rate coefficients, kv,j(T), have been determined. We show that rotational excitation of the reactants is as effective as vibrational excitation when it comes to increasing the reactivity, and that both types of excitation could contribute to explain the unexpectedly high abundance of CH(+) in the interstellar media. Such an increase in reactivity takes place by suppressing the reaction threshold when the internal energy is sufficient to overcome the endothermicity. Whenever this is the case, the excitation functions at collision energies Ecoll ≤ 0.1 eV display a ∝E(-1/2)coll dependence. However, the absolute values of the state selected kv=1(T) are one order of magnitude below the Langevin model predictions. The disagreement between the approximately derived experimental rate coefficients for v = 1 and those calculated by this and previous theoretical treatments is due to the neglect of the effect of the rotational excitation in the derivation of the former. In spite of the deep well present in the potential energy surface, the reaction does not show a statistical behaviour.
Collapse
Affiliation(s)
- D Herráez-Aguilar
- Departamento de Química Fsica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Fleming DG, Manz J, Sato K, Takayanagi T. Über eine fundamentale Änderung der Art der chemischen Bindung durch Isotopensubstitution. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Fleming DG, Manz J, Sato K, Takayanagi T. Fundamental Change in the Nature of Chemical Bonding by Isotopic Substitution. Angew Chem Int Ed Engl 2014; 53:13706-9. [DOI: 10.1002/anie.201408211] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 11/10/2022]
|
9
|
Mielke SL, Garrett BC, Fleming DG, Truhlar DG. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2reaction. Mol Phys 2014. [DOI: 10.1080/00268976.2014.951416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Pérez-Ríos J, Ragole S, Wang J, Greene CH. Comparison of classical and quantal calculations of helium three-body recombination. J Chem Phys 2014; 140:044307. [DOI: 10.1063/1.4861851] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Aoiz FJ, Aldegunde J, Herrero VJ, Sáez-Rábanos V. Comparative dynamics of the two channels of the reaction of D + MuH. Phys Chem Chem Phys 2014; 16:9808-18. [DOI: 10.1039/c3cp53908c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Aldegunde J, Jambrina P, García E, Herrero V, Sáez-Rábanos V, Aoiz F. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity. Mol Phys 2013. [DOI: 10.1080/00268976.2013.815399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Homayoon Z, Bowman JM, Dey A, Abeysekera C, Fernando R, Suits AG. Experimental and Theoretical Studies of Roaming Dynamics in the Unimolecular Dissociation of CH3NO2to CH3O+NO. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
Wang D, Jaquet R. Reactive Scattering for Different Isotopologues of the H3– System: Comparison of Different Potential Energy Surfaces. J Phys Chem A 2013; 117:7492-501. [DOI: 10.1021/jp401608s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dequan Wang
- Theoretische Chemie, Universität Siegen, D-57068 Siegen, Germany
| | - Ralph Jaquet
- Theoretische Chemie, Universität Siegen, D-57068 Siegen, Germany
| |
Collapse
|
16
|
Abstract
Hydrogen has a central role in the story of the universe itself and also in the story of our efforts to understand it. This paper retells the story of the part played by hydrogen and its stable isotope deuterium in the primordial synthesis of the elements, then goes on to describe how the spectrum of atomic hydrogen led to insights into the laws governing matter at the most fundamental level, from the quantum mechanics of Schrödinger and Heisenberg, through quantum electrodynamics, to the most recent work investigating the underlying structure of the proton itself. Atomic hydrogen is unique among the elements in that the concept of isotopy--atoms having the same nuclear charge but different masses--is stretched to its limit in the isotopes of hydrogen, ranging from the well-known isotopes deuterium and tritium to exotic species such as muonium, muonic helium, and positronium. These atoms, or atom-like objects, have much to tell us about fundamental aspects of the universe. In recent years the idea of utilizing hydrogen either as an energy source (through nuclear fusion) or as an energy storage medium (bound in hydrides or other materials) has attracted much attention as a possible avenue to a post-oil energy future. Some of the more interesting recent developments are described here. Dedicated to the memory of Brian C. Webster (1939-2008).
Collapse
Affiliation(s)
- Roderick M Macrae
- School of Mathematics and Sciences, Marian University, Indianapolis, Indiana 46222, USA.
| |
Collapse
|
17
|
Suleimanov YV, de Tudela RP, Jambrina PG, Castillo JF, Sáez-Rábanos V, Manolopoulos DE, Aoiz FJ. A ring polymer molecular dynamics study of the isotopologues of the H + H2 reaction. Phys Chem Chem Phys 2013; 15:3655-65. [DOI: 10.1039/c2cp44364c] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Jambrina PG, García E, Herrero VJ, Sáez-Rábanos V, Aoiz FJ. Dynamics of the reactions of muonium and deuterium atoms with vibrationally excited hydrogen molecules: tunneling and vibrational adiabaticity. Phys Chem Chem Phys 2012; 14:14596-604. [PMID: 23019575 DOI: 10.1039/c2cp42130e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the exchange reactions of D and Mu (Mu = muonium) with hydrogen molecules in their ground and first vibrational states. In all the cases considered, the QM rate coefficients, k(T), are in very good agreement with the available experimental results. In particular, QM calculations on the most accurate potential energy surfaces (PESs) predict a rate coefficient for the Mu + H(2) (ν = 1) reaction which is very close to the preliminary estimate of its experimental value at 300 K. In contrast to the D + H(2) (ν = 0,1) and the Mu + H(2) (ν = 0) reactions, the QCT calculations for Mu + H(2) (ν = 1) predict a much smaller k(T) than that obtained with the accurate QM method. This behaviour is indicative of tunneling. The QM reaction probabilities and total reactive cross sections show that the total energy thresholds for the reactions of Mu with H(2) in ν = 0 and ν = 1 are very similar, whereas for the corresponding reaction with D the ν = 0 total energy threshold is about 0.3 eV lower than that for ν = 1. The results just mentioned can be explained by considering the vibrational adiabatic potentials along the minimum energy path. The threshold for the reaction of Mu with H(2) in both ν = 0 and ν = 1 states is the same and is given by the height of the ground vibrational adiabatic collinear potential, whereas for the D + H(2) reaction the adiabaticity is preserved and the threshold for the reaction in ν = 1 is very close to the height of the ν = 1 adiabatic collinear barrier. For Mu + H(2) (ν = 1) the reaction takes place by crossing from the ν = 1 to the ν = 0 adiabat, since the exit channel leading to MuH (ν = 1) is not energetically accessible. At the lowest possible energies, the non-adiabatic vibrational crossing implies a strong tunneling effect through the ν = 1 adiabatic barrier. Absence of tunneling in the classical calculations results in a threshold that coincides with the height of the ν = 1 adiabatic barrier. Most interestingly, the expected tunneling effect in the reaction of Mu with hydrogen molecules occurs for H(2) (ν = 1) but not for H(2) (ν = 0) where zero-point-energy effects clearly dominate.
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Facultad de Química, Universidad Complutense (Unidad Asociada CSIC), 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Homayoon Z, Jambrina PG, Aoiz FJ, Bowman JM. Communication: Rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited. J Chem Phys 2012; 137:021102. [DOI: 10.1063/1.4734316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Pérez de Tudela R, Aoiz FJ, Suleimanov YV, Manolopoulos DE. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Zero Point Energy Conservation in Mu + H2 → MuH + H. J Phys Chem Lett 2012; 3:493-497. [PMID: 26286053 DOI: 10.1021/jz201702q] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A fundamental issue in the field of reaction dynamics is the inclusion of the quantum mechanical (QM) effects such as zero point energy (ZPE) and tunneling in molecular dynamics simulations, and in particular in the calculation of chemical reaction rates. In this work we study the chemical reaction between a muonium atom and a hydrogen molecule. The recently developed ring polymer molecular dynamics (RPMD) technique is used, and the results are compared with those of other methods. For this reaction, the thermal rate coefficients calculated with RPMD are found to be in excellent agreement with the results of an accurate QM calculation. The very minor discrepancies are within the convergence error even at very low temperatures. This exceptionally good agreement can be attributed to the dominant role of ZPE in the reaction, which is accounted for extremely well by RPMD. Tunneling only plays a minor role in the reaction.
Collapse
Affiliation(s)
- Ricardo Pérez de Tudela
- †Departamento de Química Física I, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F J Aoiz
- †Departamento de Química Física I, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Yury V Suleimanov
- ‡Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- ‡Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
21
|
Fleming DG, Arseneau DJ, Sukhorukov O, Brewer JH, Mielke SL, Truhlar DG, Schatz GC, Garrett BC, Peterson KA. Kinetics of the reaction of the heaviest hydrogen atom with H2, the4Heμ + H2→4HeμH + H reaction: Experiments, accurate quantal calculations, and variational transition state theory, including kinetic isotope effects for a factor of 36.1 in isotopic mass. J Chem Phys 2011; 135:184310. [DOI: 10.1063/1.3657440] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|