1
|
Ikizawa S, Hori T, Wijaya TN, Kono H, Bai Z, Kimizono T, Lu W, Tran DP, Kitao A. PaCS-Toolkit: Optimized Software Utilities for Parallel Cascade Selection Molecular Dynamics (PaCS-MD) Simulations and Subsequent Analyses. J Phys Chem B 2024; 128:3631-3642. [PMID: 38578072 PMCID: PMC11033871 DOI: 10.1021/acs.jpcb.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parallel cascade selection molecular dynamics (PaCS-MD) is an enhanced conformational sampling method conducted as a "repetition of time leaps in parallel worlds", comprising cycles of multiple molecular dynamics (MD) simulations performed in parallel and selection of the initial structures of MDs for the next cycle. We developed PaCS-Toolkit, an optimized software utility enabling the use of different MD software and trajectory analysis tools to facilitate the execution of the PaCS-MD simulation and analyze the obtained trajectories, including the preparation for the subsequent construction of the Markov state model. PaCS-Toolkit is coded with Python, is compatible with various computing environments, and allows for easy customization by editing the configuration file and specifying the MD software and analysis tools to be used. We present the software design of PaCS-Toolkit and demonstrate applications of PaCS-MD variations: original targeted PaCS-MD to peptide folding; rmsdPaCS-MD to protein domain motion; and dissociation PaCS-MD to ligand dissociation from adenosine A2A receptor.
Collapse
Affiliation(s)
- Shinji Ikizawa
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tatsuki Hori
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tegar Nurwahyu Wijaya
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
- Department
of Chemistry, Universitas Pertamina, Jl. Teuku Nyak Arief, Simprug, Jakarta 12220, Indonesia
| | - Hiroshi Kono
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Zhen Bai
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tatsuhiro Kimizono
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Wenbo Lu
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Duy Phuoc Tran
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Principal Component Analysis and Related Methods for Investigating the Dynamics of Biological Macromolecules. J 2022. [DOI: 10.3390/j5020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Principal component analysis (PCA) is used to reduce the dimensionalities of high-dimensional datasets in a variety of research areas. For example, biological macromolecules, such as proteins, exhibit many degrees of freedom, allowing them to adopt intricate structures and exhibit complex functions by undergoing large conformational changes. Therefore, molecular simulations of and experiments on proteins generate a large number of structure variations in high-dimensional space. PCA and many PCA-related methods have been developed to extract key features from such structural data, and these approaches have been widely applied for over 30 years to elucidate macromolecular dynamics. This review mainly focuses on the methodological aspects of PCA and related methods and their applications for investigating protein dynamics.
Collapse
|
3
|
Kurisaki I, Tanaka S. Reaction Pathway Sampling and Free-Energy Analyses for Multimeric Protein Complex Disassembly by Employing Hybrid Configuration Bias Monte Carlo/Molecular Dynamics Simulation. ACS OMEGA 2021; 6:4749-4758. [PMID: 33644582 PMCID: PMC7905796 DOI: 10.1021/acsomega.0c05579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 05/08/2023]
Abstract
Physicochemical characterization of multimeric biomacromolecule assembly and disassembly processes is a milestone to understand the mechanisms for biological phenomena at the molecular level. Mass spectroscopy (MS) and structural bioinformatics (SB) approaches have become feasible to identify subcomplexes involved in assembly and disassembly, while they cannot provide atomic information sufficient for free-energy calculation to characterize transition mechanism between two different sets of subcomplexes. To combine observations derived from MS and SB approaches with conventional free-energy calculation protocols, we here designed a new reaction pathway sampling method by employing hybrid configuration bias Monte Carlo/molecular dynamics (hcbMC/MD) scheme and applied it to simulate the disassembly process of serum amyloid P component (SAP) pentamer. The results we obtained are consistent with those of the earlier MS and SB studies with respect to SAP subcomplex species and the initial stage of SAP disassembly processes. Furthermore, we observed a novel dissociation event, ring-opening reaction of SAP pentamer. Employing free-energy calculation combined with the hcbMC/MD reaction pathway trajectories, we moreover obtained experimentally testable observations on (1) reaction time of the ring-opening reaction and (2) importance of Asp42 and Lys117 for stable formation of SAP oligomer.
Collapse
|
4
|
Takaba K, Tran DP, Kitao A. Edge expansion parallel cascade selection molecular dynamics simulation for investigating large-amplitude collective motions of proteins. J Chem Phys 2021; 152:225101. [PMID: 32534517 DOI: 10.1063/5.0004654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We propose edge expansion parallel cascade selection molecular dynamics (eePaCS-MD) as an efficient adaptive conformational sampling method to investigate the large-amplitude motions of proteins without prior knowledge of the conformational transitions. In this method, multiple independent MD simulations are iteratively conducted from initial structures randomly selected from the vertices of a multi-dimensional principal component subspace. This subspace is defined by an ensemble of protein conformations sampled during previous cycles of eePaCS-MD. The edges and vertices of the conformational subspace are determined by solving the "convex hull problem." The sampling efficiency of eePaCS-MD is achieved by intensively repeating MD simulations from the vertex structures, which increases the probability of rare event occurrence to explore new large-amplitude collective motions. The conformational sampling efficiency of eePaCS-MD was assessed by investigating the open-close transitions of glutamine binding protein, maltose/maltodextrin binding protein, and adenylate kinase and comparing the results to those obtained using related methods. In all cases, the open-close transitions were simulated in ∼10 ns of simulation time or less, offering 1-3 orders of magnitude shorter simulation time compared to conventional MD. Furthermore, we show that the combination of eePaCS-MD and accelerated MD can further enhance conformational sampling efficiency, which reduced the total computational cost of observing the open-close transitions by at most 36%.
Collapse
Affiliation(s)
- Kenichiro Takaba
- Pharmaceutical Research Center, Laboratory for Medicinal Chemistry, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, M6-13, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, M6-13, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Maruyama Y, Koroku S, Imai M, Takeuchi K, Mitsutake A. Mutation-induced change in chignolin stability from π-turn to α-turn. RSC Adv 2020; 10:22797-22808. [PMID: 35514567 PMCID: PMC9054626 DOI: 10.1039/d0ra01148g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
A mutation from threonine to proline at the eighth residue in chignolin changes π-turn to α-turn.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team
- FLAGSHIP 2020 Project
- RIKEN Center for Computational Science
- Kobe 650-0047
- Japan
| | - Shunpei Koroku
- Department of Physics
- School of Science and Technology
- Meiji University
- Kawasaki-shi
- Japan
| | - Misaki Imai
- Cellular and Molecular Biotechnology Research Institute
- National Institute of Advanced Industrial Science and Technology
- Koto
- Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute
- National Institute of Advanced Industrial Science and Technology
- Koto
- Japan
| | - Ayori Mitsutake
- Department of Physics
- School of Science and Technology
- Meiji University
- Kawasaki-shi
- Japan
| |
Collapse
|
6
|
Maruyama Y, Takano H, Mitsutake A. Analysis of molecular dynamics simulations of 10-residue peptide, chignolin, using statistical mechanics: Relaxation mode analysis and three-dimensional reference interaction site model theory. Biophys Physicobiol 2019; 16:407-429. [PMID: 31984194 PMCID: PMC6975981 DOI: 10.2142/biophysico.16.0_407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
Molecular dynamics simulation is a fruitful tool for investigating the structural stability, dynamics, and functions of biopolymers at an atomic level. In recent years, simulations can be performed on time scales of the order of milliseconds using special purpose systems. Since the most stable structure, as well as meta-stable structures and intermediate structures, is included in trajectories in long simulations, it is necessary to develop analysis methods for extracting them from trajectories of simulations. For these structures, methods for evaluating the stabilities, including the solvent effect, are also needed. We have developed relaxation mode analysis to investigate dynamics and kinetics of simulations based on statistical mechanics. We have also applied the three-dimensional reference interaction site model theory to investigate stabilities with solvent effects. In this paper, we review the results for designing amino-acid substitution of the 10-residue peptide, chignolin, to stabilize the misfolded structure using these developed analysis methods.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Takano
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
7
|
Abstract
We discuss the stability of an entire protein and the influence of main chains and side chains of individual amino acids to investigate the protein-folding mechanism. For this purpose, we calculated the solvation free-energy contribution of individual atoms using the three-dimensional reference interaction site model with the atomic decomposition method. We generated structures of chignolin miniprotein by a molecular dynamics simulation and classified them into six types: native 1, native 2, misfolded 1, misfolded 2, intermediate, and unfolded states. The total energies of the native (-171.1 kcal/mol) and misfolded (-171.2 kcal/mol) states were almost the same and lower than those of the intermediate (-158.5 kcal/mol) and unfolded (-148.1 kcal/mol) states; however, their components were different. In the native state, the side-chain interaction between Thr6 and Thr8 is important for the formation of π-turn. On the other hand, the hydrogen bonds between the atoms of the main chains in the misfolded state become stronger than those in the intermediate state.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Co-Design Team, FLAGSHIP 2020 Project , RIKEN Advanced Institute for Computational Science , Kobe 650-0047 , Japan
| | - Ayori Mitsutake
- Department of Physics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
8
|
Sakuraba S, Kono H. Spotting the difference in molecular dynamics simulations of biomolecules. J Chem Phys 2017; 145:074116. [PMID: 27544096 DOI: 10.1063/1.4961227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
Collapse
Affiliation(s)
- Shun Sakuraba
- Molecular Modeling and Simulation Group, Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kidugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kidugawa, Kyoto 619-0215, Japan
| |
Collapse
|
9
|
High anisotropy and frustration: the keys to regulating protein function efficiently in crowded environments. Curr Opin Struct Biol 2017; 42:50-58. [DOI: 10.1016/j.sbi.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
|
10
|
Harada R, Takano Y, Baba T, Shigeta Y. Simple, yet powerful methodologies for conformational sampling of proteins. Phys Chem Chem Phys 2016; 17:6155-73. [PMID: 25659594 DOI: 10.1039/c4cp05262e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several biological functions, such as molecular recognition, enzyme catalysis, signal transduction, allosteric regulation, and protein folding, are strongly related to conformational transitions of proteins. These conformational transitions are generally induced as slow dynamics upon collective motions, including biologically relevant large-amplitude fluctuations of proteins. Although molecular dynamics (MD) simulation has become a powerful tool for extracting conformational transitions of proteins, it might still be difficult to reach time scales of the biological functions because the accessible time scales of MD simulations are far from biological time scales, even if straightforward conventional MD (CMD) simulations using massively parallel computers are employed. Thus, it is desirable to develop efficient methods to achieve canonical ensembles with low computational costs. From this perspective, we review several enhanced conformational sampling techniques of biomolecules developed by us. In our methods, multiple independent short-time MD simulations are employed instead of single straightforward long-time CMD simulations. Our basic strategy is as follows: (i) selection of initial seeds (initial structures) for the conformational sampling in restarting MD simulations. Here, the seeds should be selected as candidates with high potential to transit. (ii) Resampling from the selected seeds by initializing velocities in restarting short-time MD simulations. A cycle of these simple protocols might drastically promote the conformational transitions of biomolecules. (iii) Once reactive trajectories extracted from the cycles of short-time MD simulations are obtained, a free energy profile is evaluated by means of umbrella sampling (US) techniques with the weighted histogram analysis method (WHAM) as a post-processing technique. For the selection of the initial seeds, we proposed four different choices: (1) Parallel CaScade molecular dynamics (PaCS-MD), (2) Fluctuation Flooding Method (FFM), (3) Outlier FLOODing (OFLOOD) method, and (4) TaBoo SeArch (TBSA) method. We demonstrate applications of our methods to several biological systems, such as domain motions of proteins with large-amplitude fluctuations, conformational transitions upon ligand binding, and protein folding/refolding to native structures of proteins. Finally, we show the conformational sampling efficiencies of our methods compared with those by CMD simulations and other previously developed enhanced conformational sampling methods.
Collapse
Affiliation(s)
- Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | | | | | | |
Collapse
|
11
|
Harada R, Nakamura T, Shigeta Y. Sparsity-weighted outlier FLOODing (OFLOOD) method: Efficient rare event sampling method using sparsity of distribution. J Comput Chem 2015; 37:724-38. [DOI: 10.1002/jcc.24255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/06/2015] [Accepted: 10/29/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Ryuhei Harada
- Department of Physics Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
- Division of Life Sciences; Center for Computational Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
- Computational Engineering Application Unit, RIKEN Advanced Center for Computing and Communication; 2-1, Hirosawa Wako Saitama 351-0198 Japan
| | | | - Yasuteru Shigeta
- Department of Physics Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
- Division of Life Sciences; Center for Computational Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
- JST, CREST; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
12
|
Harada R, Kitao A. Nontargeted Parallel Cascade Selection Molecular Dynamics for Enhancing the Conformational Sampling of Proteins. J Chem Theory Comput 2015; 11:5493-502. [PMID: 26574337 DOI: 10.1021/acs.jctc.5b00723] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nontargeted parallel cascade selection molecular dynamics (nt-PaCS-MD) is proposed as an efficient conformational sampling method to enhance the conformational transitions of proteins, which is an extension of the original targeted PaCS-MD (t-PaCS-MD). The original PaCS-MD comprises cycles of (i) selection of initial structures for multiple independent MD simulations toward a predetermined target and (ii) conformational sampling by the independent MDs. In nt-PaCS-MD, structures that significantly deviate from an average are regarded as candidates that have high potential to address other metastable states and are chosen as the initial structures in the selection. To select significantly deviated structures, we examine the root-mean-square deviation (RMSD) of snapshots generated from the average structure based on Gram-Schmidt orthogonalization. nt-PaCS-MD was applied to the folding of the mini-protein chignolin in implicit solvent and to the open-closed conformational transitions of T4 lysozyme (T4L) and glutamine binding protein (QBP) in explicit solvent. We show that nt-PaCS-MD can reach chignolin's native state and can also cause the open-closed transition of T4L and QBP on a nanosecond time scale, which are very efficient in terms of conformational sampling and comparable to that with t-PaCS-MD.
Collapse
Affiliation(s)
| | - Akio Kitao
- Institute of Molecular and Cellular Bioscience, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
13
|
Tamura K, Hayashi S. Linear Response Path Following: A Molecular Dynamics Method To Simulate Global Conformational Changes of Protein upon Ligand Binding. J Chem Theory Comput 2015; 11:2900-17. [PMID: 26575728 DOI: 10.1021/acs.jctc.5b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding. The method introduces a biasing force based on a linear response theory, which determines a local reaction coordinate in the configuration space that represents linear coupling between local events of ligand binding and global conformational changes and thus provides one with fully atomistic models undergoing large conformational changes without knowledge of a target structure. The overall transition process involving nonlinear conformational changes is simulated through iterative cycles consisting of a biased MD simulation with an updated linear response force and a following unbiased MD simulation for relaxation. We applied the method to the simulation of global conformational changes of the yeast calmodulin N-terminal domain and successfully searched out the end conformation. The atomistically detailed trajectories revealed a sequence of molecular events that properly lead to the global conformational changes and identified key steps of local-global coupling that induce the conformational transitions. The LRPF method provides one with a powerful means to model conformational changes of proteins such as motors and transporters where local-global coupling plays a pivotal role in their functional processes.
Collapse
Affiliation(s)
- Koichi Tamura
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Harada R, Takano Y, Shigeta Y. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins. J Chem Phys 2014; 140:125103. [PMID: 24697482 DOI: 10.1063/1.4869594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.
Collapse
Affiliation(s)
- Ryuhei Harada
- RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yu Takano
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
15
|
Harada R, Kitao A. Parallel Cascade Selection Molecular Dynamics (PaCS-MD) to generate conformational transition pathway. J Chem Phys 2014; 139:035103. [PMID: 23883057 DOI: 10.1063/1.4813023] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.
Collapse
Affiliation(s)
- Ryuhei Harada
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, 7-3-1, Hongo, Japan
| | | |
Collapse
|
16
|
Direct observation of T4 lysozyme hinge-bending motion by fluorescence correlation spectroscopy. Biophys J 2012; 103:1525-36. [PMID: 23062345 DOI: 10.1016/j.bpj.2012.07.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 10/27/2022] Open
Abstract
Bacteriophage T4 Lysozyme (T4L) catalyzes the hydrolysis of the peptidoglycan layer of the bacterial cell wall late in the infection cycle. It has long been postulated that equilibrium dynamics enable substrate access to the active site located at the interface between the N- and C-terminal domains. Crystal structures of WT-T4L and point mutants captured a range of conformations that differ by the hinge-bending angle between the two domains. Evidence of equilibrium between open and closed conformations in solution was gleaned from distance measurements between the two domains but the nature of the equilibrium and the timescale of the underlying motion have not been investigated. Here, we used fluorescence fluctuation spectroscopy to directly detect T4L equilibrium conformational fluctuations in solution. For this purpose, Tetramethylrhodamine probes were introduced at pairs of cysteines in regions of the molecule that undergo relative displacement upon transition from open to closed conformations. Correlation analysis of Tetramethylrhodamine intensity fluctuations reveals hinge-bending motion that changes the relative distance and orientation of the N- and C-terminal domains with ≅ 15 μs relaxation time. That this motion involves interconversion between open and closed conformations was further confirmed by the dampening of its amplitude upon covalent substrate trapping. In contrast to the prevalent two-state model of T4L equilibrium, molecular brightness and number of particles obtained from cumulant analysis suggest that T4L populates multiple intermediate states, consistent with the wide range of hinge-bending angles trapped in the crystal structure of T4L mutants.
Collapse
|
17
|
Davis CM, Xiao S, Raleigh DP, Dyer RB. Raising the speed limit for β-hairpin formation. J Am Chem Soc 2012; 134:14476-82. [PMID: 22873643 DOI: 10.1021/ja3046734] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the folding of the β-hairpin is a crucial step in studying how β-rich proteins fold. We have studied CLN025, an optimized ten residue synthetic peptide, which adopts a compact, well-structured β-hairpin conformation. Formation of the component β-sheet and β-turn structures of CLN025 was probed independently using a combination of equilibrium Fourier transform infrared spectroscopy and laser-induced temperature jump coupled with time-resolved infrared and fluorescence spectroscopies. We find that CLN025 is an ultrafast folder due to its small free energy barrier to folding and that it exceeds the predicted speed limit for β-hairpin formation by an order of magnitude. We also find that the folding mechanism cannot be described by a simple two-state model, but rather is a heterogeneous process involving two independent parallel processes. Formation of stabilizing cross-strand hydrophobic interactions and turn alignment occur competitively, with relaxation lifetimes of 82 ± 10 and 124 ± 10 ns, respectively, at the highest probed temperature. The ultrafast and heterogeneous folding kinetics observed for CLN025 provide evidence for folding on a nearly barrierless free energy landscape, and recalibrate the speed limit for the formation of a β-hairpin.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
18
|
Harada R, Kitao A. The Fast-Folding Mechanism of Villin Headpiece Subdomain Studied by Multiscale Distributed Computing. J Chem Theory Comput 2011; 8:290-9. [DOI: 10.1021/ct200363h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryuhei Harada
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, 7-3-1, Hongo, Bunkyo-ku 113-0033, Japan
- Institute of Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akio Kitao
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, 7-3-1, Hongo, Bunkyo-ku 113-0033, Japan
- Institute of Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
19
|
Kitao A. Erratum: “Transform and relax sampling for highly anisotropic systems: Application to protein domain motion and folding” [J. Chem. Phys. 135, 045101 (2011)]. J Chem Phys 2011. [DOI: 10.1063/1.3642607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|