1
|
Plohl O, Kokol V, Filipić A, Fric K, Kogovšek P, Fratnik ZP, Vesel A, Kurečič M, Robič J, Gradišnik L, Maver U, Zemljič LF. Screen-printing of chitosan and cationised cellulose nanofibril coatings for integration into functional face masks with potential antiviral activity. Int J Biol Macromol 2023; 236:123951. [PMID: 36898451 PMCID: PMC9995302 DOI: 10.1016/j.ijbiomac.2023.123951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.
Collapse
Affiliation(s)
- Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Arijana Filipić
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Katja Fric
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Polona Kogovšek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Zdenka Peršin Fratnik
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Alenka Vesel
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Teslova 30, 1000 Ljubljana, Slovenia.
| | - Manja Kurečič
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Jure Robič
- Omega Air d.o.o Ljubljana, Cesta Dolomitskega odreda 10, 1000 Ljubljana, Slovenia.
| | - Lidija Gradišnik
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Xie F, Sun W, Pinacho P, Schnell M. CO 2 Aggregation on Monoethanolamine: Observations from Rotational Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202218539. [PMID: 36719030 DOI: 10.1002/anie.202218539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
The initial stages of the gas-phase nucleation between CO2 and monoethanolamine were investigated via broadband rotational spectroscopy with the aid of extensive theoretical structure sampling. Sub-nanometer-scale aggregation patterns of monoethanolamine-(CO2 )n , n=1-4, were identified. An interesting competition between the monoethanolamine intramolecular hydrogen bond and the intermolecular interactions between monoethanolamine and CO2 upon cluster growth was discovered, revealing an intriguing CO2 binding priority to the hydroxyl group over the amine group. These findings are in sharp contrast to the general results for aqueous solutions. In the quinary complex, a cap-like CO2 tetramer was observed cooperatively surrounding the monoethanolamine. As the cluster approaches the critical size of new particle formation, the contribution of CO2 self-assembly to the overall stability increases.
Collapse
Affiliation(s)
- Fan Xie
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wenhao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Pablo Pinacho
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| |
Collapse
|
3
|
Wang H, Zhao A, Yang D, Zheng R. Theoretical and experimental studies of the isotope effects for He-CO 2 and Ne-CO 2 complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119391. [PMID: 33422872 DOI: 10.1016/j.saa.2020.119391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/12/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this work, we have studied the isotope effects for the He-CO2 and Ne-CO2 complexes by means of theoretical calculations and experimental measurements, which were carried out using a distributed quantum cascade laser to probe a pulsed supersonic jet expansion. Firstly, infrared spectra have been recorded for the He/Ne-12C18O2 complexes. Spectroscopic parameters including band origin ν0, rotational constants A, B, C, and centrifugal distortion constants ΔJK were obtained by fitting a Watson A-reduced Hamiltonian with 13 assigned rovibrational transitions for He-12C18O2. For Ne-12C18O2, the observed spectrum produces a set of spectroscopic parameters including the band origin, rotational constants and all the quartic centrifugal distortion constants with more than 100 rovibrational transitions (40 new transitions). Secondly, we have calculated the rovibrational energy levels, vibrational shifts, and rotational constants for the He/Ne-CO2 complexes based on potential energy surfaces (PESs) and bound state calculations for ground and vibrationally excited states. The obtained results show that the spectroscopic characteristics (vibrational shifts and rotational constants) for Ne-CO2 are analogous to those of Ar-CO2, while those for He-CO2 show some differences especially for the rotational constants. Finally, according to the available experimental data and our theoretical calculations, infrared spectra were predicted for six isotopologues with C2v symmetry of Ne-CO2 complex.
Collapse
Affiliation(s)
- Hongli Wang
- School of Physics & Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China
| | - Aiqing Zhao
- School of Physics & Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China
| | - Dapeng Yang
- School of Physics & Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China
| | - Rui Zheng
- School of Physics & Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China.
| |
Collapse
|
4
|
Efficiency increase in hypercrosslinked polymer based on polystyrene in CO2 adsorption process. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03678-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Azuma WA, Nakashima S, Yamakita E, Ohta T. Water Adsorption to Leaves of Tall Cryptomeria japonica Tree Analyzed by Infrared Spectroscopy under Relative Humidity Control. PLANTS 2020; 9:plants9091107. [PMID: 32867326 PMCID: PMC7569789 DOI: 10.3390/plants9091107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Leaf water storage is a complex interaction between live tissue properties (anatomy and physiology) and physicochemical properties of biomolecules and water. How leaves adsorb water molecules based on interactions between biomolecules and water, including hydrogen bonding, challenges our understanding of hydraulic acclimation in tall trees where leaves are exposed to more water stress. Here, we used infrared (IR) microspectroscopy with changing relative humidity (RH) on leaves of tall Cryptomeria japonica trees. OH band areas correlating with water content were larger for treetop (52 m) than for lower-crown (19 m) leaves, regardless of relative humidity (RH). This high water adsorption in treetop leaves was not explained by polysaccharides such as Ca-bridged pectin, but could be attributed to the greater cross-sectional area of the transfusion tissue. In both treetop and lower-crown leaves, the band areas of long (free water: around 3550 cm−1) and short (bound water: around 3200 cm−1) hydrogen bonding OH components showed similar increases with increasing RH, while the band area of free water was larger at the treetop leaves regardless of RH. Free water molecules with longer H bonds were considered to be adsorbed loosely to hydrophobic CH surfaces of polysaccharides in the leaf-cross sections.
Collapse
Affiliation(s)
- Wakana A. Azuma
- Graduate School of Agricultural Science, Kobe University, Kobe 675-8501, Japan
- Correspondence: ; Tel.: +81-78-803-5936
| | - Satoru Nakashima
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan or (S.N.); (E.Y.)
- Faculty of Environmental and Urban Engineering, Kansai University, Osaka, Suita 564-8680, Japan
- Research Institute for Natural Environment, Science and Technology (RINEST), Tarumi-cho 3-6-32 Maison Esaka 1F, Suita, Osaka 564-0062, Japan
| | - Eri Yamakita
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan or (S.N.); (E.Y.)
| | - Tamihisa Ohta
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan;
| |
Collapse
|
6
|
Grein F. Additivity and non-additivity of dissociation energies in intermolecular interactions. Theoretical studies on (H 2) n, n = 2-8, (CO 2) n, n = 2-6 and (HF) n, n = 2-8. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1753839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Friedrich Grein
- Department of Chemistry, University of New Brunswick, Fredericton, Canada
| |
Collapse
|
7
|
Lippe M, Szczepaniak U, Hou GL, Chakrabarty S, Ferreiro JJ, Chasovskikh E, Signorell R. Infrared Spectroscopy and Mass Spectrometry of CO2 Clusters during Nucleation and Growth. J Phys Chem A 2019; 123:2426-2437. [DOI: 10.1021/acs.jpca.9b01030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Martina Lippe
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Urszula Szczepaniak
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Gao-Lei Hou
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Satrajit Chakrabarty
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Jorge J. Ferreiro
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Egor Chasovskikh
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Kannangara PB, West CT, Peebles SA, Peebles RA. Towards microsolvation of fluorocarbons by CO2: Two isomers of fluoroethylene-(CO2)2 observed using chirped-pulse Fourier-transform microwave spectroscopy. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Sode O, Cherry JN. Development of a Flexible-Monomer Two-Body Carbon Dioxide Potential and Its Application to Clusters up to (CO 2 ) 13. J Comput Chem 2017; 38:2763-2774. [PMID: 29067701 DOI: 10.1002/jcc.25053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
A flexible-monomer two-body potential energy function was developed that approaches the high level CCSD(T)/CBS potential energy surface (PES) of carbon dioxide (CO2 ) systems. This function was generated by fitting the electronic energies of unique CO2 monomers and dimers to permutationally invariant polynomials. More than 200,000 CO2 configurations were used to train the potential function. Comparisons of the PESs of six orientations of flexible CO2 dimers were evaluated to demonstrate the accuracy of the potential. Furthermore, the potential function was used to determine the minimum energy structures of CO2 clusters containing as many as 13 molecules. For isomers of (CO2 )3 , the potential demonstrated energetic agreement with the M06-2X functional and structural agreement of the B2PLYP-D functional at substantially reduced computational costs. A separate function, fit to MP2/aug-cc-pVDZ reference energies, was developed to directly compare the two-body potential to the ab initio MP2 level of theory. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olaseni Sode
- Department of Chemistry, Biochemistry and Physics, The University of Tampa, Tampa, Florida, 33606
| | - Jasmine N Cherry
- Department of Chemistry, Biochemistry and Physics, The University of Tampa, Tampa, Florida, 33606
| |
Collapse
|
10
|
Norooz Oliaee J, Dehghany M, Rezaei M, McKellar ARW, Moazzen-Ahmadi N. Five intermolecular vibrations of the CO 2 dimer observed via infrared combination bands. J Chem Phys 2016; 145:174302. [PMID: 27825225 DOI: 10.1063/1.4966146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The weakly bound van der Waals dimer (CO2)2 has long been of considerable theoretical and experimental interest. Here, we study its low frequency intermolecular vibrations by means of combination bands in the region of the CO2 monomer ν3 fundamental (≈2350 cm-1), which are observed using a tunable infrared laser to probe a pulsed supersonic slit jet expansion. With the help of a recent high level ab initio calculation by Wang, Carrington, and Dawes, four intermolecular frequencies are assigned: the in-plane disrotatory bend (22.26 cm-1); the out-of-plane torsion (23.24 cm-1); twice the disrotatory bend (31.51 cm-1); and the in-plane conrotatory bend (92.25 cm-1). The disrotatory bend and torsion, separated by only 0.98 cm-1, are strongly mixed by Coriolis interactions. The disrotatory bend overtone is well behaved, but the conrotatory bend is highly perturbed and could not be well fitted. The latter perturbations could be due to tunneling effects, which have not previously been observed experimentally for CO2 dimer. A fifth combination band, located 1.3 cm-1 below the conrotatory bend, remains unassigned.
Collapse
Affiliation(s)
- J Norooz Oliaee
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - M Dehghany
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - Mojtaba Rezaei
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - A R W McKellar
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Moazzen-Ahmadi
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
McGuire BA, Ioppolo S, Allodi MA, Blake GA. THz time-domain spectroscopy of mixed CO2-CH3OH interstellar ice analogs. Phys Chem Chem Phys 2016; 18:20199-207. [PMID: 27306081 PMCID: PMC6842323 DOI: 10.1039/c6cp00632a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The icy mantles of interstellar dust grains are the birthplaces of the primordial prebiotic molecular inventory that may eventually seed nascent solar systems and the planets and planetesimals that form therein. Here, we present a study of two of the most abundant species in these ices after water: carbon dioxide (CO2) and methanol (CH3OH), using TeraHertz (THz) time-domain spectroscopy and mid-infrared spectroscopy. We study pure and mixed-ices of these species, and demonstrate the power of the THz region of the spectrum to elucidate the long-range structure (i.e. crystalline versus amorphous) of the ice, the degree of segregation of these species within the ice, and the thermal history of the species within the ice. Finally, we comment on the utility of the THz transitions arising from these ices for use in astronomical observations of interstellar ices.
Collapse
Affiliation(s)
- Brett A McGuire
- National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA. and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sergio Ioppolo
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Marco A Allodi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA and Department of Chemistry, The Institute for Biophysical Dynamics, and the James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Rezaei M, Norooz Oliaee J, Moazzen-Ahmadi N, McKellar ARW. Infrared spectra reveal box-like structures for a pentamer and hexamer of mixed carbon dioxide-acetylene clusters. Phys Chem Chem Phys 2016; 18:1381-5. [PMID: 26315679 DOI: 10.1039/c5cp03842a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Except for a few cases like water and carbon dioxide, identification and structural characterization of clusters with more than four monomers is rare. Here, we provide experimental and theoretical evidence for existence of box-like structures for a pentamer and a hexamer of mixed carbon dioxide-acetylene clusters. Two mid-infrared cluster absorption bands are observed in the CO2ν3 band region using a tunable diode laser to probe a pulsed supersonic jet. Each requires the presence of both carbon dioxide and acetylene in the jet, and (from observed rotational spacings) involves clusters containing about 4 to 7 molecules. Structures are predicted for mixed CO2 + C2H2 clusters using a distributed multipole model, and the bands are assigned to a specific pentamer, (CO2)3-(C2H2)2, and hexamer, (CO2)4-(C2H2)2. The hexamer has a box-like structure whose D2d symmetry is supported by observed intensity alternation in the spectrum. The pentamer has a closely related structure which is obtained by removing one CO2 molecule from the hexamer. These are among the largest mixed molecular clusters to be assigned by high-resolution spectroscopy.
Collapse
Affiliation(s)
- Mojtaba Rezaei
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
13
|
Evangelisti L, Perez C, Seifert NA, Pate BH, Dehghany M, Moazzen-Ahmadi N, McKellar ARW. Theory vs. experiment for molecular clusters: Spectra of OCS trimers and tetramers. J Chem Phys 2015; 142:104309. [PMID: 25770542 DOI: 10.1063/1.4914323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
All singly substituted (13)C, (18)O, and (34)S isotopomers of the previously known OCS trimer are observed in natural abundance in a broad-band spectrum measured with a chirped-pulse Fourier transform microwave spectrometer. The complete substitution structure thus obtained critically tests (and confirms) the common assumption that monomers tend to retain their free structure in a weakly bound cluster. A new OCS trimer isomer is also observed, and its structure is determined to be barrel-shaped but with the monomers all approximately aligned, in contrast to the original trimer which is barrel-shaped with two monomers aligned and one anti-aligned. An OCS tetramer spectrum is assigned for the first time, and the tetramer structure resembles an original trimer with an OCS monomer added at the end with two sulfur atoms. Infrared spectra observed in the region of the OCS ν1 fundamental (≈2060 cm(-1)) are assigned to the same OCS tetramer, and another infrared band is tentatively assigned to a different tetramer isomer. The experimental results are compared and contrasted with theoretical predictions from the literature and from new cluster calculations which use an accurate OCS pair potential and assume pairwise additivity.
Collapse
Affiliation(s)
- Luca Evangelisti
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, USA
| | - Cristobal Perez
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, USA
| | - Nathan A Seifert
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, USA
| | - Brooks H Pate
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, USA
| | - M Dehghany
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - N Moazzen-Ahmadi
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - A R W McKellar
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
14
|
Gadre SR, Yeole SD, Sahu N. Quantum chemical investigations on molecular clusters. Chem Rev 2014; 114:12132-73. [PMID: 25341561 DOI: 10.1021/cr4006632] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | | | | |
Collapse
|
15
|
Sahu N, Gadre SR. Molecular tailoring approach: a route for ab initio treatment of large clusters. Acc Chem Res 2014; 47:2739-47. [PMID: 24798296 DOI: 10.1021/ar500079b] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Conspectus Chemistry on the scale of molecular clusters may be dramatically different from that in the macroscopic bulk. Greater understanding of chemistry in this size regime could greatly influence fields such as materials science and atmospheric and environmental chemistry. Recent advances in experimental techniques and computational resources have led to accurate investigations of the energies and spectral properties of weakly bonded molecular clusters. These have enabled researchers to learn how the physicochemical properties evolve from individual molecules to bulk materials and to understand the growth patterns of clusters. Experimental techniques such as infrared, microwave, and photoelectron spectroscopy are the most popular and powerful tools for probing molecular clusters. In general, these experimental techniques do not directly reveal the atomistic details of the clusters but provide data from which the structural details need to be unearthed. Furthermore, the resolution of the spectral properties of energetically close cluster conformers can be prohibitively difficult. Thus, these investigations of molecular aggregates require a combination of experiments and theory. On the theoretical front, researchers have been actively engaged in quantum chemical ab initio calculations as well as simulation-based studies for the last few decades. To obtain reliable results, there is a need to use correlated methods such as Møller-Plesset second order method, coupled cluster theory, or dispersion corrected density functional theory. However, due to nonlinear scaling of these methods, optimizing the geometry of large clusters still remains a formidable quantum chemistry challenge. Fragment-based methods, such as divide-and-conquer, molecular tailoring approach (MTA), fragment molecular orbitals, and generalized energy-based fragmentation approach, provide alternatives for overcoming the scaling problem for spatially extended molecular systems. Within MTA, a large system is broken down into two or more subsystems that can be readily treated computationally. Finally, the properties of the large system are obtained by patching the corresponding properties of all the subsystems. Due to these approximations, the resulting MTA-based energies carry some error in comparison with calculations based on the full system. An approach for correcting these errors has been attempted by grafting the error at a lower basis set onto a higher basis set. Furthermore, investigating the growth patterns and nucleation processes in clusters is necessary for understanding the structural transitions and the phenomena of magic numbers in cluster chemistry. Therefore, systematic building-up or the introduction of stochastics for generating molecular assemblies is the most crucial step for studying large clusters. In this Account, we discuss the working principle of MTA for probing molecular clusters at ab initio level followed by a brief summary of an automated and electrostatics-guided algorithm for building molecular assemblies. The molecular aggregates presented here as test cases are generated based on either an electrostatic criterion or the basin hopping method. At MP2 level computation, the errors in MTA-based grafted energies are typically reduced to a submillihartree level, reflecting the potential of finding accurate energies of molecular clusters much more quickly. In summary, MTA provides a platform for effectively studying large molecular clusters at ab initio level of theory using minimal computer hardware.
Collapse
Affiliation(s)
- Nityananda Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Shridhar R. Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| |
Collapse
|
16
|
Moazzen-Ahmadi N, McKellar A. Spectroscopy of dimers, trimers and larger clusters of linear molecules. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2013.813799] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Structural and spectroscopic studies of carbon dioxide clusters: a combined genetic algorithm and DFT based study. Struct Chem 2013. [DOI: 10.1007/s11224-013-0360-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Sahu N, Yeole SD, Gadre SR. Appraisal of molecular tailoring approach for large clusters. J Chem Phys 2013; 138:104101. [PMID: 23514459 DOI: 10.1063/1.4793706] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High level ab initio investigations on molecular clusters are generally restricted to those of small size essentially due to the nonlinear scaling of corresponding computational cost. Molecular tailoring approach (MTA) is a fragmentation-based method, which offers an economical and efficient route for studying larger clusters. However, due to its approximate nature, the MTA-energies carry some errors vis-à-vis their full calculation counterparts. These errors in the MTA-energies are reduced by grafting the correction at a lower basis set (e.g., 6-31+G(d)) onto a higher basis set (e.g., aug-cc-pvdz or aug-cc-pvtz) calculation at MP2 level of theory. Further, better estimates of energies are obtained by making use of many-body interaction analysis. For this purpose, R-goodness (Rg) parameters for the three- and four-body interactions in a fragmentation scheme are proposed. The procedure employing grafting and many-body analysis has been tested out on molecular clusters of water, benzene, acetylene and carbon dioxide. It is found that for the fragmentation scheme having higher three- and four-body Rg-values, the errors in MTA-grafted energies are reduced typically to ~0.2 mH at MP2 level calculation. Coupled with the advantage in terms of computational resources and CPU time, the present method opens a possibility of accurate treatment of large molecular clusters.
Collapse
|
19
|
Lemke KH, Seward TM. Thermodynamic properties of carbon dioxide clusters by M06-2X and dispersion-corrected B2PLYP-D theory. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.04.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Rezaei M, Norooz Oliaee J, Moazzen-Ahmadi N, McKellar A. Infrared spectrum of the CS2 tetramer: Observation of a structure with D2d symmetry. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.03.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
|
22
|
Rezaei M, Oliaee JN, Moazzen-Ahmadi N, McKellar ARW. Spectroscopic observation of nitrous oxide pentamers. J Chem Phys 2012; 136:224308. [DOI: 10.1063/1.4729157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Yeole SD, Sahu N, Gadre SR. Structures, energetics and vibrational spectra of CO2 clusters through molecular tailoring and cluster building algorithm. Phys Chem Chem Phys 2012; 14:7718-23. [DOI: 10.1039/c2cp23761j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|