1
|
Sahbani M, Das S, Green JR. Classical Fisher information for differentiable dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:103139. [PMID: 37889952 DOI: 10.1063/5.0165484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Fisher information is a lower bound on the uncertainty in the statistical estimation of classical and quantum mechanical parameters. While some deterministic dynamical systems are not subject to random fluctuations, they do still have a form of uncertainty. Infinitesimal perturbations to the initial conditions can grow exponentially in time, a signature of deterministic chaos. As a measure of this uncertainty, we introduce another classical information, specifically for the deterministic dynamics of isolated, closed, or open classical systems not subject to noise. This classical measure of information is defined with Lyapunov vectors in tangent space, making it less akin to the classical Fisher information and more akin to the quantum Fisher information defined with wavevectors in Hilbert space. Our analysis of the local state space structure and linear stability leads to upper and lower bounds on this information, giving it an interpretation as the net stretching action of the flow. Numerical calculations of this information for illustrative mechanical examples show that it depends directly on the phase space curvature and speed of the flow.
Collapse
Affiliation(s)
- Mohamed Sahbani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Swetamber Das
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
2
|
Chekmarev SF. Alternation of phases of regular and irregular dynamics in protein folding. Phys Rev E 2019; 99:022412. [PMID: 30934237 DOI: 10.1103/physreve.99.022412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Indexed: 06/09/2023]
Abstract
The regularity of the dynamics in different phases of protein folding is investigated for a set of proteins which undergo a cooperative, two-state folding transition. To determine the degree of regularity of the dynamics, the fractal dimension of probability fluxes is calculated on the basis of simulated folding trajectories. It has been found that the phases of regular and irregular dynamics alternate as follows. In the initial (collapse) phase of folding, the dynamics are essentially regular. Then, as the protein comes to the basin of semicompact states that precedes the transition state, the dynamics become irregular. At the transition state, the dynamics are regularized again but become less regular when the nativelike states are explored. Depending on the specific conditions at which the protein folding was considered, some phases of the dynamics could not be well resolved, but no significant deviation from this general picture has been observed. The regularization of the dynamics at the transition state is discussed in relation to the recent studies of the Hamiltonian dynamics of small clusters, where both regular and chaotic dynamics were observed depending on the flatness of the energy surface at the transition state.
Collapse
Affiliation(s)
- Sergei F Chekmarev
- Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia and Physics Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Revuelta F, Craven GT, Bartsch T, Borondo F, Benito RM, Hernandez R. Transition state theory for activated systems with driven anharmonic barriers. J Chem Phys 2017; 147:074104. [DOI: 10.1063/1.4997571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Revuelta
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
| | - Galen T. Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
USA
| | - Thomas Bartsch
- Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, Loughborough
LE11 3TU, United Kingdom
| | - F. Borondo
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - R. M. Benito
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Das M, Costa AB, Green JR. Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids. Phys Rev E 2017; 95:022102. [PMID: 28297958 DOI: 10.1103/physreve.95.022102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 11/07/2022]
Abstract
According to the van der Waals picture, attractive and repulsive forces play distinct roles in the structure of simple fluids. Here, we examine their roles in dynamics; specifically, in the degree of deterministic chaos using the Kolmogorov-Sinai (KS) entropy rate and the spectra of Lyapunov exponents. With computer simulations of three-dimensional Lennard-Jones and Weeks-Chandler-Andersen fluids, we find repulsive forces dictate these dynamical properties, with attractive forces reducing the KS entropy at a given thermodynamic state. Regardless of interparticle forces, the maximal Lyapunov exponent is intensive for systems ranging from 200 to 2000 particles. Our finite-size scaling analysis also shows that the KS entropy is both extensive (a linear function of system-size) and additive. Both temperature and density control the "dynamical chemical potential," the rate of linear growth of the KS entropy with system size. At fixed system-size, both the KS entropy and the largest exponent exhibit a maximum as a function of density. We attribute the maxima to the competition between two effects: as particles are forced to be in closer proximity, there is an enhancement from the sharp curvature of the repulsive potential and a suppression from the diminishing free volume and particle mobility. The extensivity and additivity of the KS entropy and the intensivity of the largest Lyapunov exponent, however, hold over a range of temperatures and densities across the liquid and liquid-vapor coexistence regimes.
Collapse
Affiliation(s)
- Moupriya Das
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Anthony B Costa
- Numerical Solutions, Inc., P.O. Box 396, Corvallis, Oregon 97330, USA
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.,Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.,Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
5
|
Alaghemandi M, Green JR. Reactive symbol sequences for a model of hydrogen combustion. Phys Chem Chem Phys 2016; 18:2810-7. [PMID: 26729563 DOI: 10.1039/c5cp05125h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transient, macroscopic states of chemical disequilibrium are born out of the microscopic dynamics of molecules. As a reaction mixture evolves, the temporal patterns of chemical species encodes some of this dynamical information, while their statistics are a manifestation of the bulk kinetics. Here, we define a chemically-informed symbolic dynamics as a coarse-grained representation of classical molecular dynamics, and analyze the sequences of chemical species for a model of hydrogen combustion. We use reactive molecular dynamics simulations to generate the sequences and derive probability distributions for sequence observables: the reaction time scales and the chain length - the total number of reactions between initiation of a reactant and termination at products. The time scales and likelihood of the sequences depend strongly on the chain length, temperature, and density. Temperature suppresses the uncertainty in chain length for hydrogen sequences, but enhances the uncertainty in oxygen sequence chain lengths. This method of analyzing a surrogate chemical symbolic dynamics reduces the complexity of the chemistry from the atomistic to the molecular level and has the potential for extension to more complicated reaction systems.
Collapse
Affiliation(s)
- Mohammad Alaghemandi
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA. and Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
6
|
Craven GT, Bartsch T, Hernandez R. Chemical reactions induced by oscillating external fields in weak thermal environments. J Chem Phys 2015; 142:074108. [DOI: 10.1063/1.4907590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Galen T. Craven
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Thomas Bartsch
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
7
|
Lorquet JC. Crossing the dividing surface of transition state theory. II. Recrossing times for the atom-diatom interaction. J Chem Phys 2014; 140:134304. [PMID: 24712790 DOI: 10.1063/1.4870039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We consider a triatomic system with zero total angular momentum and demonstrate that, no matter how complicated the anharmonic part of the potential energy function, classical dynamics in the vicinity of a saddle point is constrained by symmetry properties. At short times and at not too high energies, recrossing dynamics is largely determined by elementary local structural parameters and thus can be described in configuration space only. Conditions for recrossing are given in the form of inequalities involving structural parameters only. Explicit expressions for recrossing times, valid for microcanonical ensembles, are shown to obey interesting regularities. In a forward reaction, when the transition state is nonlinear and tight enough, one-fourth of the trajectories are expected to recross the plane R = R* (where R* denotes the position of the saddle point) within a short time. Another fourth of them are expected to have previously recrossed at a short negative time, i.e., close to the saddle point. These trajectories do not contribute to the reaction rate. The reactive trajectories that obey the transition state model are to be found in the remaining half. However, no conclusion can be derived for them, except that if recrossings occur, then they must either take place in the distant future or already have taken place in the remote past, i.e., far away from the saddle point. Trajectories that all cross the plane R = R* at time t = 0, with the same positive translational momentum P(R*) can be partitioned into two sets, distinguished by the parity of their initial conditions; both sets have the same average equation of motion up to and including terms cubic in time. Coordination is excellent in the vicinity of the saddle point but fades out at long (positive or negative) times, i.e., far away from the transition state.
Collapse
Affiliation(s)
- J C Lorquet
- Department of Chemistry, University of Liège, Sart-Tilman (Bâtiment B6), B-4000 Liège 1, Belgium
| |
Collapse
|
8
|
Lorquet JC. Crossing the dividing surface of transition state theory. I. Underlying symmetries and motion coordination in multidimensional systems. J Chem Phys 2014; 140:134303. [PMID: 24712789 DOI: 10.1063/1.4870038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The objective of the present paper is to show the existence of motion coordination among a bundle of trajectories crossing a saddle point region in the forward direction. For zero total angular momentum, no matter how complicated the anharmonic part of the potential energy function, classical dynamics in the vicinity of a transition state is constrained by symmetry properties. Trajectories that all cross the plane R = R* at time t = 0 (where R* denotes the position of the saddle point) with the same positive translational momentum P(R*) can be partitioned into two sets, denoted "gerade" and "ungerade," which coordinate their motions. Both sets have very close average equations of motion. This coordination improves tremendously rapidly as the number of degrees of freedom increases. This property can be traced back to the existence of time-dependent constants of the motion.
Collapse
Affiliation(s)
- J C Lorquet
- Department of Chemistry, University of Liège, Sart-Tilman (Bâtiment B6), B-4000 Liège 1, Belgium
| |
Collapse
|
9
|
|