1
|
Pokhilko P, Zgid D. Natural orbitals and two-particle correlators as tools for the analysis of effective exchange couplings in solids. Phys Chem Chem Phys 2023; 25:21267-21279. [PMID: 37548912 DOI: 10.1039/d3cp01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Using generalizations of spin-averaged natural orbitals and two-particle charge correlators for solids, we investigate the electronic structure of antiferromagnetic transition-metal oxides with a fully self-consistent, imaginary-time GW method. Our findings disagree with the Goodenough-Kanamori (GK) rules that are commonly used for the qualitative interpretation of such solids. First, we found a strong dependence of the natural orbital occupancies on momenta, contradicting GK assumptions. Second, along the momentum path, the character of natural orbitals changes. In particular, the contributions of oxygen 2s orbitals are important, which has not been considered in the GK rules. To analyze the influence of the electronic correlation on the values of effective exchange coupling constants, we use both natural orbitals and two-particle correlators and show that electronic screening modulates the degree of superexchange by stabilizing the charge-transfer contributions, which greatly affects these coupling constants. Finally, we give a set of predictions and recommendations regarding the use of density functional, Green's function, and wave-function methods for evaluating effective magnetic couplings in molecules and solids.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Duplaix-Rata G, Le Guennic B, David G. Revisiting magnetic exchange couplings in heterodinuclear complexes through the decomposition method in KS-DFT. Phys Chem Chem Phys 2023; 25:14170-14178. [PMID: 37162514 DOI: 10.1039/d3cp00697b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Providing tools to understand the physical mechanisms governing magnetic properties in transition metal-based compounds is still of great interest. Here, the magnetic exchange coupling in a series of heterodinuclear complexes is investigated by means of the decomposition method. This work presents the first application of the decomposition method to systems where magnetic centres may bear more than one unpaired electron. By decomposing the coupling into three physical contributions (direct exchange, kinetic exchange, and spin polarisation), we provide numerical arguments to confirm or infirm the rationalisation allowed by the conceptual analysis of the magnetic d orbitals. We also take advantage of the recently proposed generalisation of the method [David et al., J. Chem. Theory Comput., 2023, 19, 157] to get more insights into the underlying mechanisms by disentangling the coupling between centres into its electron-electron interactions.
Collapse
Affiliation(s)
- Gwenhaël Duplaix-Rata
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Grégoire David
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
3
|
Kotaru S, Kähler S, Alessio M, Krylov AI. Magnetic exchange interactions in binuclear and tetranuclear iron(III) complexes described by spin-flip DFT and Heisenberg effective Hamiltonians. J Comput Chem 2023; 44:367-380. [PMID: 35699152 PMCID: PMC10084445 DOI: 10.1002/jcc.26941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022]
Abstract
Low-energy spectra of single-molecule magnets (SMMs) are often described by Heisenberg Hamiltonians. Within this formalism, exchange interactions between magnetic centers determine the ground-state multiplicity and energy separation between the ground and excited states. In this contribution, we extract exchange coupling constants (J) for a set of iron (III) binuclear and tetranuclear complexes from all-electron calculations using non-collinear spin-flip time-dependent density functional theory (NC-SF-TDDFT). For 12 binuclear complexes with J-values ranging from -6 to -132 cm-1 , our benchmark calculations using the short-range hybrid ωPBEh functional and 6-31G(d,p) basis set agree well with the experimentally derived values (mean absolute error of 4.7 cm-1 ). For the tetranuclear SMMs, the computed J constants are within 6 cm-1 from the experimentally derived values. We explore the range of applicability of the Heisenberg model by analyzing bonding patterns in these Fe(III) complexes using natural orbitals (NO), their occupations, and the number of effectively unpaired electrons. The results illustrate the efficiency of the spin-flip protocol for computing the exchange couplings and the utility of the NO analysis in assessing the validity of effective spin Hamiltonians.
Collapse
Affiliation(s)
- Saikiran Kotaru
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Sven Kähler
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Maristella Alessio
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Anna I. Krylov
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
4
|
David G, Ferré N, Le Guennic B. Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. J Chem Theory Comput 2023; 19:157-173. [PMID: 36475691 DOI: 10.1021/acs.jctc.2c01022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of broken-symmetry calculations in Kohn-Sham density functional theory has offered an affordable route to study magnetic exchange couplings in transition-metal-based compounds. However, computing this property in compounds exhibiting several couplings is still challenging and especially due to the difficulties to overcome the well-known problem of spin contamination. Here, we present a new and general method to compute magnetic exchange couplings in systems featuring several spin sites. To provide a consistent spin decontamination of J values, our strategy exploits the decomposition method of the magnetic exchange coupling proposed by Coulaud et al. and generalizes our previous work on diradical compounds where the overall magnetic exchange coupling is defined as the sum of its three main and properly extracted physical contributions (direct exchange, kinetic exchange, and spin polarization). In this aim, the generalized extraction of all contributions is presented to systems with multiple spin sites bearing one unpaired electron. This is done by proposing a new paradigm to treat the kinetic exchange contribution, which proceeds through monorelaxations of the magnetic orbitals. This method, so-called the recomposition method, is applied to a compound featuring three Cu(II) ions with a linear arrangement and to a recently synthesized complex containing a Cu4O4 cubane unit presenting an unusual magnetic behavior.
Collapse
Affiliation(s)
- Grégoire David
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000Rennes, France
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013Marseille, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000Rennes, France
| |
Collapse
|
5
|
David G, Ben Amor N, Zeng T, Suaud N, Trinquier G, Malrieu JP. Difficulty of the evaluation of the barrier height of an open-shell transition state between closed shell minima: The case of small C 4n rings. J Chem Phys 2022; 156:224104. [PMID: 35705394 DOI: 10.1063/5.0090129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
C4n cyclacenes exhibit strong bond-alternation in their equilibrium geometry. In the two equivalent geometries, the system keeps an essentially closed-shell character. The two energy minima are separated by a transition state suppressing the bond-alternation, where the wave function is strongly diradical. This paper discusses the physical factors involved in this energy difference and possible evaluations of the barrier height. The barrier given as the energy difference between the restricted density functional theory (DFT)/B3LYP for the equilibrium and the broken symmetry DFT/B3LYP of the transition state is either negative or small, in contradiction with the most reliable Wave Function Theory calculations. The minimal (two electrons in two molecular orbitals) Complete Active Space self-consistent field (CASSCF) overestimates the barrier, and the subsequent second-order perturbation cancels it. Due to the collective character of the spin-polarization effect, it is necessary to perform a full π CASSCF + second-order perturbation to reach a reasonable value of the barrier, but this type of treatment cannot be applied to large molecules. DFT procedures treating on an equal foot the closed-shell and open-shell geometries have been explored, such as Mixed-Reference Spin-Flip Time-dependent-DFT and a new spin-decontamination proposal, namely, DFT-dressed configuration interaction, but the results still depend on the density functional. M06-2X without or with spin-decontamination gives the best agreement with the accurate wave function results.
Collapse
Affiliation(s)
- Grégoire David
- University Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Nadia Ben Amor
- Laboratoire de Chimie et Physique Quantiques, IRSAMC-CNRS-UMR5626, Université Paul-Sabatier (Toulouse III), 31062 Toulouse Cedex 4, France
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, IRSAMC-CNRS-UMR5626, Université Paul-Sabatier (Toulouse III), 31062 Toulouse Cedex 4, France
| | - Georges Trinquier
- Laboratoire de Chimie et Physique Quantiques, IRSAMC-CNRS-UMR5626, Université Paul-Sabatier (Toulouse III), 31062 Toulouse Cedex 4, France
| | - Jean-Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques, IRSAMC-CNRS-UMR5626, Université Paul-Sabatier (Toulouse III), 31062 Toulouse Cedex 4, France
| |
Collapse
|
6
|
Krivdin LB. Computational NMR of heavy nuclei involving 109Ag, 113Cd, 119Sn, 125Te, 195Pt, 199Hg, 205Tl, and 207Pb. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Rask AE, Zimmerman PM. Toward Full Configuration Interaction for Transition-Metal Complexes. J Phys Chem A 2021; 125:1598-1609. [DOI: 10.1021/acs.jpca.0c07624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alan E. Rask
- Department of Chemistry, University of Michigan, 930N. University Avenue, Ann Arbor 48109, Michigan, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, 930N. University Avenue, Ann Arbor 48109, Michigan, United States
| |
Collapse
|
8
|
Carreras A, Jiang H, Pokhilko P, Krylov AI, Zimmerman PM, Casanova D. Calculation of spin–orbit couplings using RASCI spinless one-particle density matrices: Theory and applications. J Chem Phys 2020; 153:214107. [DOI: 10.1063/5.0029146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Abel Carreras
- Donostia International Physics Center (DIPC), Manuel de Lardizabal Pasalekua 4, 20018 Donostia, Euskadi, Spain
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David Casanova
- Donostia International Physics Center (DIPC), Manuel de Lardizabal Pasalekua 4, 20018 Donostia, Euskadi, Spain
| |
Collapse
|
9
|
Abstract
This Perspective discusses salient features of the spin-flip approach to strong correlation and describes different methods that sprung from this idea. The spin-flip treatment exploits the different physics of low-spin and high-spin states and is based on the observation that correlation is small for same-spin electrons. By using a well-behaved high-spin state as a reference, one can access problematic low-spin states by deploying the same formal tools as in the excited-state treatments (i.e., linear response, propagator, or equation-of-motion theories). The Perspective reviews applications of this strategy within wave function and density functional theory frameworks as well as the extensions for molecular properties and spectroscopy. The utility of spin-flip methods is illustrated by examples. Limitations and proposed future directions are also discussed.
Collapse
Affiliation(s)
- David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain. and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Euskadi, Spain
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
10
|
Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. INORGANICS 2019. [DOI: 10.3390/inorganics7050057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular systems containing magnetically interacting (exchange-coupled) manganese ions are important in catalysis, biomimetic chemistry, and molecular magnetism. The reliable prediction of exchange coupling constants with quantum chemical methods is key for tracing the relationships between structure and magnetic properties in these systems. Density functional theory (DFT) in the broken-symmetry approach has been employed extensively for this purpose and hybrid functionals with moderate levels of Hartree–Fock exchange admixture have often been shown to perform adequately. Double-hybrid density functionals that introduce a second-order perturbational contribution to the Kohn–Sham energy are generally regarded as a superior approach for most molecular properties, but their performance remains unexplored for exchange-coupled manganese systems. An assessment of various double-hybrid functionals for the prediction of exchange coupling constants is presented here using a set of experimentally characterized dinuclear manganese complexes that cover a wide range of exchange coupling situations. Double-hybrid functionals perform more uniformly compared to conventional DFT methods, but they fail to deliver improved accuracy or reliability in the prediction of exchange coupling constants. Reparametrized double-hybrid density functionals (DHDFs) perform no better, and most often worse, than the original B2-PLYP double-hybrid method. All DHDFs are surpassed by the hybrid-meta-generalized gradient approximation (GGA) TPSSh functional. Possible directions for future methodological developments are discussed.
Collapse
|
11
|
Googheri MS, Abolhassani MR, Mirzaei M. A molecular modelling study of the effects of pivalate ligand substitutions on the magnetic properties of chromium-wheels host complexes. J Mol Graph Model 2019; 87:41-47. [DOI: 10.1016/j.jmgm.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
12
|
David G, Wennmohs F, Neese F, Ferré N. Chemical Tuning of Magnetic Exchange Couplings Using Broken-Symmetry Density Functional Theory. Inorg Chem 2018; 57:12769-12776. [DOI: 10.1021/acs.inorgchem.8b01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Frank Wennmohs
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470 North Rhine-Westphalia, Germany
| | | |
Collapse
|
13
|
Orms N, Krylov AI. Singlet-triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory. Phys Chem Chem Phys 2018; 20:13127-13144. [PMID: 29376159 DOI: 10.1039/c7cp07356a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular magnets, defined here as organic polyradicals, can be used as building blocks in the fabrication of novel and structurally diverse magnetic light-weight materials. We present a theoretical investigation of the lowest spin states of several binuclear copper diradicals. In contrast to previous studies, we consider not only the energetics of the low-lying states (which are related to the exchange-coupling parameter within the Heisenberg-Dirac-van-Vleck model), but also the character of the diradical states themselves. We use natural orbitals, their occupations, and the number of effectively unpaired electrons to quantify bonding patterns in these systems. We compare the performance of spin-flip time-dependent density functional theory (SF-TDDFT) using various functionals and effective core potentials against the wave function based approach, equation-of-motion spin-flip coupled-cluster method with single and double substitutions (EOM-SF-CCSD). We find that SF-TDDFT paired with the PBE50 and B5050LYP functionals performs comparably to EOM-SF-CCSD, with respect to both singlet-triplet gaps and states' characters. Visualization of frontier natural orbitals shows that the unpaired electrons are localized on copper centers, in some cases exhibiting slight through-bond interaction via copper d-orbitals and p-orbitals of neighboring ligand atoms. The analysis reveals considerable interactions between the formally unpaired electrons in the antiferromagnetic diradicaloids, meaning that they are poorly described by the Heisenberg-Dirac-van-Vleck model. Thus, for these systems the experimentally derived exchange-coupling parameters are not directly comparable with the singlet-triplet gaps. This explains systematic discrepancies between the computed singlet-triplet energy gaps and the exchange-coupling parameters extracted from experiment.
Collapse
Affiliation(s)
- Natalie Orms
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA.
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA.
| |
Collapse
|
14
|
Sadeghi Googheri M, Abolhassani MR, Mirzaei M. Influence of ligand-bridged substitution on the exchange coupling constant of chromium-wheels host complexes: a density functional theory study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1426128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Mahmoud Mirzaei
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Malrieu JP, Caballol R, Calzado CJ, de Graaf C, Guihéry N. Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. Chem Rev 2013; 114:429-92. [PMID: 24102410 DOI: 10.1021/cr300500z] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse 3 , 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
16
|
Zhekova H, Seth M, Ziegler T. Density functional theory studies on the structure and electron distribution in the peroxide intermediate of the catalytic cycle of multicopper oxidases. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peroxide intermediate (PI) is obtained in the first step of the reduction of O2 by multicopper oxidases. Earlier density functional theory (DFT) studies as well as spectral and structural comparison to a fully oxidized structural analogue of the PI known as the peroxide adduct (PA) reveal that O2 bridges all three copper atoms of the trinuclear cluster in the PI. This orientation of the oxygen moiety has been discussed as a result of the influence from the second coordination sphere. In the present study, we investigate by DFT and quantum mechanics/molecular mechanics (QM/MM) the potential energy surface (PES) of the PI as a function of the orientation of O2 within the copper cluster to examine the influence of the second coordination sphere on the structure of the PI. We use the second order spin-flip constricted variational DFT method to probe a possible multideterminantal nature of the PI and to devise a computational strategy for its treatment. Our results suggest that the PI can be approximated to a closed shell singlet. Additionally, for the determination of the oxidation states of the three copper atoms in the PI, the electron redistribution upon the formation of the PI has been investigated with the extended transition state–natural orbitals for chemical valence method. We observe a flat PES on which oxygen can easily rotate between the copper atoms. The fully bridged PI structure emerges in the absence of atoms from the second coordination sphere and has been attributed to the coordination unsaturation of the copper atoms in the cluster. The good Cu–O overlap leads to the participation of all copper atoms in the reduction of O2.
Collapse
Affiliation(s)
- Hristina Zhekova
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Michael Seth
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
17
|
Seidu I, Seth M, Ziegler T. Role Played by Isopropyl Substituents in Stabilizing the Putative Triple Bond in Ar′EEAr′ [E = Si, Ge, Sn; Ar′ = C6H3-2,6-(C6H3-2,6-Pri2)2] and Ar*PbPbAr* [Ar* = C6H3-2,6-(C6H2-2,4,6-Pri3)2]. Inorg Chem 2013; 52:8378-88. [DOI: 10.1021/ic401149h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Issaka Seidu
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
T2N 1N4
| | - Michael Seth
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
T2N 1N4
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
T2N 1N4
| |
Collapse
|
18
|
Maurice R, Graaf CD, Guihéry N. Theoretical determination of spin Hamiltonians with isotropic and anisotropic magnetic interactions in transition metal and lanthanide complexes. Phys Chem Chem Phys 2013; 15:18784-804. [DOI: 10.1039/c3cp52521j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Coulaud E, Guihéry N, Malrieu JP, Hagebaum-Reignier D, Siri D, Ferré N. Analysis of the physical contributions to magnetic couplings in broken symmetry density functional theory approach. J Chem Phys 2012; 137:114106. [DOI: 10.1063/1.4752412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Bandeira NAG, Guennic BL. Calculation of Magnetic Couplings in Hydrogen-Bonded Cu(II) Complexes Using Density Functional Theory. J Phys Chem A 2012; 116:3465-73. [DOI: 10.1021/jp300618v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuno A G Bandeira
- Université de Lyon, CNRS, Institut de Chimie de Lyon, Ecole Normale Supérieure de Lyon, France
| | | |
Collapse
|