1
|
Takahashi H, Borrelli R. Effective modeling of open quantum systems by low-rank discretization of structured environments. J Chem Phys 2024; 161:151101. [PMID: 39422205 DOI: 10.1063/5.0232232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
The accurate description of the interaction of a quantum system with its environment is a challenging problem ubiquitous across all areas of physics and lies at the foundation of quantum mechanics theory. Here, we pioneer a new strategy to create discrete low-rank models of the system-environment interaction, by exploiting the frequency and time domain information encoded in the fluctuation-dissipation relation connecting the system-bath correlation function and the spectral density. We demonstrate the effectiveness of our methodology by combining it with tensor-network methodologies and simulating the quantum dynamics of complex excitonic systems in a highly structured bosonic environment. The new modeling framework sets the basis for a leap in the analysis of open quantum systems, providing controlled accuracy at significantly reduced computational costs, with benefits in all connected research areas.
Collapse
|
2
|
Niermann T, Hoppe H, Manthe U. A multi-layer multi-configurational time-dependent Hartree approach to lattice models beyond one dimension. J Chem Phys 2024; 161:134109. [PMID: 39360683 DOI: 10.1063/5.0228399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
The multi-layer multi-configurational time-dependent Hartree (MCTDH) approach is an efficient method to study quantum dynamics in real and imaginary time. The present work explores its potential to describe quantum fluids. The multi-layer MCTDH approach in second quantization representation is used to study lattice models beyond one dimension at finite temperatures. A scheme to map the lattice sites onto the MCTDH tree representation for multi-dimensional lattice models is proposed. A statistical sampling scheme previously used in MCTDH calculations is adapted to facilitate an efficient description of the thermal ensemble. As example, a two-dimensional hard-core Bose-Hubbard model is studied considering up to 64 × 64 lattice sites. The single particle function basis set size required to obtain converged results is found to not increase with the lattice size. The numerical results properly simulate the finite temperature Berezinskii-Kosterlitz-Thouless phase transition.
Collapse
Affiliation(s)
- Tristan Niermann
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hannes Hoppe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
3
|
Liu L, Ren J, Fang W. Improved memory truncation scheme for quasi-adiabatic propagator path integral via influence functional renormalization. J Chem Phys 2024; 161:084101. [PMID: 39171703 DOI: 10.1063/5.0221916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Accurately simulating non-Markovian quantum dynamics in system-bath coupled problems remains challenging. In this work, we present a novel memory truncation scheme for the iterative quasi-adiabatic propagator path integral (iQuAPI) method to improve accuracy. Conventional memory truncation in iQuAPI discards all influence functional beyond a certain time interval, which is not effective for problems with a long memory time. Our proposed scheme selectively retains the most significant parts of the influence functional using the density matrix renormalization group algorithm. We validate the effectiveness of our scheme through simulations of the spin-boson model across various parameter sets, demonstrating faster convergence and improved accuracy compared to the conventional scheme. Our findings suggest that the new memory truncation scheme significantly advances the capabilities of iQuAPI for problems with a long memory time.
Collapse
Affiliation(s)
- Limin Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, People's Republic of China
| | - Jiajun Ren
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, People's Republic of China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, People's Republic of China
| |
Collapse
|
4
|
Mäck M, Thoss M, Rudge SL. Nonadiabatic dynamics of molecules interacting with metal surfaces: Extending the hierarchical equations of motion and Langevin dynamics approach to position-dependent metal-molecule couplings. J Chem Phys 2024; 161:064106. [PMID: 39132787 DOI: 10.1063/5.0222076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Electronic friction and Langevin dynamics is a popular mixed quantum-classical method for simulating the nonadiabatic dynamics of molecules interacting with metal surfaces, as it can be computationally more efficient than fully quantum approaches. In this work, we extend the theory of electronic friction within the hierarchical equations of motion formalism to models with a position-dependent metal-molecule coupling. We show that the addition of a position-dependent metal-molecule coupling adds new contributions to the electronic friction and other forces, which are highly relevant for many physical processes. Our expressions for the electronic forces within the Langevin equation are valid both in and out of equilibrium and for molecular models containing strong interactions. We demonstrate the approach by applying it to different models of interest.
Collapse
Affiliation(s)
- Martin Mäck
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Samuel L Rudge
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Li W, Ren J, Yang H, Wang H, Shuai Z. Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems. J Chem Phys 2024; 161:054116. [PMID: 39105557 DOI: 10.1063/5.0218773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator. The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems, such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment and incorporate temperature effects via thermo-field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
Collapse
Affiliation(s)
- Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- Tencent Quantum Lab, Tencent, Shenzhen 518057, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hengrui Yang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| |
Collapse
|
6
|
Hoppe H, Manthe U. Eigenstate calculation in the state-averaged (multi-layer) multi-configurational time-dependent Hartree approach. J Chem Phys 2024; 160:034104. [PMID: 38230812 DOI: 10.1063/5.0188748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
A new approach for the calculation of eigenstates with the state-averaged (multi-layer) multi-configurational time-dependent Hartree (MCTDH) approach is presented. The approach is inspired by the recent work of Larsson [J. Chem. Phys. 151, 204102 (2019)]. It employs local optimization of the basis sets at each node of the multi-layer MCTDH tree and successive downward and upward sweeps to obtain a globally converged result. At the top node, the Hamiltonian represented in the basis of the single-particle functions (SPFs) of the first layer is diagonalized. Here p wavefunctions corresponding to the p lowest eigenvalues are computed by a block Lanczos approach. At all other nodes, a non-linear operator consisting of the respective mean-field Hamiltonian matrix and a projector onto the space spanned by the respective SPFs is considered. Here, the eigenstate corresponding to the lowest eigenvalue is computed using a short iterative Lanczos scheme. Two different examples are studied to illustrate the new approach: the calculation of the vibrational states of methyl and acetonitrile. The calculations for methyl employ the single-layer MCTDH approach, a general potential energy surface, and the correlation discrete variable representation. A five-layer MCTDH representation and a sum of product-type Hamiltonian are used in the acetonitrile calculations. Very fast convergence and order of magnitude reductions in the numerical effort compared to the previously used block relaxation scheme are found. Furthermore, a detailed comparison with the results of Avila and Carrington [J. Chem. Phys. 134, 054126 (2011)] for acetonitrile highlights the potential problems of convergence tests for high-dimensional systems.
Collapse
Affiliation(s)
- Hannes Hoppe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Yang H, Li W, Ren J, Shuai Z. Time-Dependent Density Matrix Renormalization Group Method for Quantum Transport with Phonon Coupling in Molecular Junction. J Chem Theory Comput 2023; 19:6070-6081. [PMID: 37669099 DOI: 10.1021/acs.jctc.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Quantum transport in molecular junctions has attracted great attention. The charge motion in a molecular junction can cause geometric deformation, leading to strong electron phonon coupling, which was often overlooked. We have formulated a nearly exact method to assess the time-dependent current and occupation number in the molecular junction modeled by the electron-phonon coupled bridge state using the time-dependent density matrix renormalization group (TD-DMRG) method. The oscillation period and amplitude of the current are found to be dependent on the electron phonon coupling strength and energy level alignment with the electrodes. In an attempt to better understand these phenomena, we have devised a new approximation that explains the bistability phenomenon and the behavior of steady currents in the strong electron-phonon coupling regime. Comparisons have been made with the multilayer-multiconfiguration time-dependent Hartree (ML-MCTDH) method and the analytical result in the purely electronic limit. Furthermore, we explore the entropy of different orderings, extending to the electron phonon model problems. Regarding finite temperature, the thermal Bogoliubov transformation of both fermions and bosons is used and compared with imaginary time evolution results.
Collapse
Affiliation(s)
- Hengrui Yang
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
8
|
Medvedev IG. Classical master equations and broadened classical master equations: Some analytical results. J Chem Phys 2021; 155:114116. [PMID: 34551549 DOI: 10.1063/5.0064325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Some analytical results for the steady-state properties of the single-molecule tunneling junction are obtained with the use of the broadened classical master equations and classical master equations. The case of the one electronic level of the bridge molecule coupled to a single classical harmonic oscillator is considered within the spin-less model. Based on these equations, we establish some relations between different average values of interest, considering the large bias limit and the limit of the weak electron-oscillator coupling. We derive the analytical expressions for a number of characteristic properties of the tunneling junction in these limiting cases, compare our results with those obtained by the numerically exact calculations, and find that our expressions work very well. In the diabatic regime, the approximate solutions of the classical master equations are suggested, which permit us to introduce the effective temperature Teff and perform rather simple calculations of the average vibrational excitations N and the tunnel current I. It is shown that in the adiabatic regime, the properties of the tunneling junction depend essentially on the effective temperature Teff ad. We obtain the analytical expressions for Teff ad using different approaches for the treatment of the adiabatic regime. For both the diabatic and adiabatic regimes, we calculate Teff, Teff ad, N, and I, compare our results with those available in the literature, and confirm well agreement. The dependence of N and I on the reorganization energy and the position of the electronic level of the bridge molecule is discussed.
Collapse
Affiliation(s)
- Igor G Medvedev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russian Federation
| |
Collapse
|
9
|
Weike T, Manthe U. Symmetries in the multi-configurational time-dependent Hartree wavefunction representation and propagation. J Chem Phys 2021; 154:194108. [PMID: 34240912 DOI: 10.1063/5.0054105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In multi-configurational time-dependent Hartree (MCTDH) approaches, different multi-layered wavefunction representations can be used to represent the same physical wavefunction. Transformations between different equivalent representations of a physical wavefunction that alter the tree structure used in the multi-layer MCTDH wavefunction representation interchange the role of single-particle functions (SPFs) and single-hole functions (SHFs) in the MCTDH formalism. While the physical wavefunction is invariant under these transformations, this invariance does not hold for the standard multi-layer MCTDH equations of motion. Introducing transformed SPFs, which obey normalization conditions typically associated with SHFs, revised equations of motion are derived. These equations do not show the singularities resulting from the inverse single-particle density matrix and are invariant under tree transformations. Based on the revised equations of motion, a new integration scheme is introduced. The scheme combines the advantages of the constant mean-field approach of Beck and Meyer [Z. Phys. D 42, 113 (1997)] and the singularity-free integrator suggested by Lubich [Appl. Math. Res. Express 2015, 311]. Numerical calculations studying the spin boson model in high dimensionality confirm the favorable properties of the new integration scheme.
Collapse
Affiliation(s)
- Thomas Weike
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
10
|
Wang H, Meyer HD. Importance of Appropriately Regularizing the ML-MCTDH Equations of Motion. J Phys Chem A 2021; 125:3077-3087. [DOI: 10.1021/acs.jpca.0c11221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hans-Dieter Meyer
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Kershaw VF, Kosov DS. Non-adiabatic effects of nuclear motion in quantum transport of electrons: A self-consistent Keldysh-Langevin study. J Chem Phys 2020; 153:154101. [PMID: 33092389 DOI: 10.1063/5.0023275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The molecular junction geometry is modeled in terms of nuclear degrees of freedom that are embedded in a stochastic quantum environment of non-equilibrium electrons. The time-evolution of the molecular geometry is governed via a mean force, a frictional force, and a stochastic force, forces arising from many electrons tunneling across the junction for a given nuclear vibration. Conversely, the current-driven nuclear dynamics feed back to the electronic current, which can be captured according to the extended expressions for the current that have explicit dependences on classical nuclear velocities and accelerations. Current-induced nuclear forces and the non-adiabatic electric current are computed using non-equilibrium Green's functions via a timescale separation solution of Keldysh-Kadanoff-Baym equations in the Wigner space. Applying the theory to molecular junctions demonstrated that non-adiabatic corrections play an important role when nuclear motion is considered non-equilibrium and, in particular, showed that non-equilibrium and equilibrium descriptions of nuclear motion produce significantly different current characteristics. It is observed that non-equilibrium descriptions generally produce heightened conductance profiles relative to the equilibrium descriptions and provide evidence that the effective temperature is an effective measure of the steady-state characteristics. Finally, we observe that the non-equilibrium descriptions of nuclear motion can give rise to the Landauer blowtorch effect via the emergence of multi-minima potential energy surfaces in conjunction with non-uniform temperature profiles. The Landauer blowtorch effect and its impact on the current characteristics, waiting times, and the Fano factor are explored for an effective adiabatic potential that morphs between a single, double, and triple potential as a function of voltage.
Collapse
Affiliation(s)
- Vincent F Kershaw
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Daniel S Kosov
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Zhang HD, Cui L, Gong H, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments. J Chem Phys 2020; 152:064107. [PMID: 32061227 DOI: 10.1063/1.5136093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hierarchical equations of motion (HEOM) method has become one of the most popular methods for the studies of the open quantum system. However, its applicability to systems at ultra-low temperatures is largely restrained by the enormous computational cost, which is caused by the numerous exponential functions required to accurately characterize the non-Markovian memory of the reservoir environment. To overcome this problem, a Fano spectrum decomposition (FSD) scheme has been proposed recently [Cui et al., J. Chem. Phys. 151, 024110 (2019)], which expands the reservoir correlation functions using polynomial-exponential functions and hence greatly reduces the size of the memory basis set. In this work, we explicitly establish the FSD-based HEOM formalisms for both bosonic and fermionic environments. The accuracy and efficiency of the FSD-based HEOM are exemplified by the calculated low-temperature dissipative dynamics of a spin-boson model and the dynamic and static properties of a single-orbital Anderson impurity model in the Kondo regime. The encouraging numerical results highlight the practicality and usefulness of the FSD-based HEOM method for general open systems at ultra-low temperatures.
Collapse
Affiliation(s)
- Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Sowa JK, Lambert N, Seideman T, Gauger EM. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions. II. A self-consistent Born approach. J Chem Phys 2020; 152:064103. [PMID: 32061212 DOI: 10.1063/1.5143146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marcus and Landauer-Büttiker approaches to charge transport through molecular junctions describe two contrasting mechanisms of electronic conduction. In previous work, we have shown how these charge transport theories can be unified in the single-level case by incorporating lifetime broadening into the second-order quantum master equation. Here, we extend our previous treatment by incorporating lifetime broadening in the spirit of the self-consistent Born approximation. By comparing both theories to numerically converged hierarchical-equations-of-motion results, we demonstrate that our novel self-consistent approach rectifies shortcomings of our earlier framework, which are present especially in the case of relatively strong electron-vibrational coupling. We also discuss circumstances under which the theory developed here simplifies to the generalized theory developed in our earlier work. Finally, by considering the high-temperature limit of our new self-consistent treatment, we show how lifetime broadening can also be self-consistently incorporated into Marcus theory. Overall, we demonstrate that the self-consistent approach constitutes a more accurate description of molecular conduction while retaining most of the conceptual simplicity of our earlier framework.
Collapse
Affiliation(s)
- Jakub K Sowa
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik M Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
15
|
Weike T, Manthe U. The multi-configurational time-dependent Hartree approach in optimized second quantization: Imaginary time propagation and particle number conservation. J Chem Phys 2020; 152:034101. [DOI: 10.1063/1.5140984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Thomas Weike
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
Kershaw VF, Kosov DS. Non-equilibrium Green’s function theory for non-adiabatic effects in quantum transport: Inclusion of electron-electron interactions. J Chem Phys 2019; 150:074101. [DOI: 10.1063/1.5058735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Vincent F. Kershaw
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Daniel S. Kosov
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
17
|
Wang H, Shao J. Quantum Phase Transition in the Spin-Boson Model: A Multilayer Multiconfiguration Time-Dependent Hartree Study. J Phys Chem A 2019; 123:1882-1893. [DOI: 10.1021/acs.jpca.8b11136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
- Beijing Computational Science Research Center, No. 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Jiushu Shao
- College of Chemistry and Center for Advanced Quantum Studies and Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Sowa JK, Mol JA, Briggs GAD, Gauger EM. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions: A unified framework. J Chem Phys 2018; 149:154112. [DOI: 10.1063/1.5049537] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jakub K. Sowa
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - Jan A. Mol
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - G. Andrew D. Briggs
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - Erik M. Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
19
|
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA and Beijing Computational Science Research Center, No. 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Hans-Dieter Meyer
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Liu X, Liu J. Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems. J Chem Phys 2018; 148:102319. [PMID: 29544327 DOI: 10.1063/1.5005059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
Collapse
Affiliation(s)
- Xinzijian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Wang H, Thoss M. A multilayer multiconfiguration time-dependent Hartree study of the nonequilibrium Anderson impurity model at zero temperature. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Prucker V, Bockstedte M, Thoss M, Coto PB. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach. J Chem Phys 2018; 148:124705. [DOI: 10.1063/1.5020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. Prucker
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - M. Bockstedte
- Department Chemistry and Physics of Materials, Universität Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria
- Lehrstuhl für Theoretische Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - M. Thoss
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - P. B. Coto
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| |
Collapse
|
23
|
Dou W, Schinabeck C, Thoss M, Subotnik JE. A broadened classical master equation approach for treating electron-nuclear coupling in non-equilibrium transport. J Chem Phys 2018; 148:102317. [DOI: 10.1063/1.4992784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Schinabeck
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, University Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - Michael Thoss
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, University Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Thoss M, Evers F. Perspective: Theory of quantum transport in molecular junctions. J Chem Phys 2018; 148:030901. [DOI: 10.1063/1.5003306] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - Ferdinand Evers
- Institute of Theoretical Physics, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
25
|
Kershaw VF, Kosov DS. Nonequilibrium Green’s function theory for nonadiabatic effects in quantum electron transport. J Chem Phys 2017; 147:224109. [DOI: 10.1063/1.5007071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vincent F. Kershaw
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Daniel S. Kosov
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
26
|
Agarwalla BK, Segal D. The Anderson impurity model out-of-equilibrium: Assessing the accuracy of simulation techniques with an exact current-occupation relation. J Chem Phys 2017; 147:054104. [DOI: 10.1063/1.4996562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bijay Kumar Agarwalla
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
27
|
Manthe U. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:253001. [PMID: 28430111 DOI: 10.1088/1361-648x/aa6e96] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
Collapse
Affiliation(s)
- Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
28
|
Manthe U, Weike T. On the multi-layer multi-configurational time-dependent Hartree approach for bosons and fermions. J Chem Phys 2017; 146:064117. [DOI: 10.1063/1.4975662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Wang H, Thoss M. On the accuracy of the noninteracting electron approximation for vibrationally coupled electron transport. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Wang H, Thoss M. Employing an interaction picture to remove artificial correlations in multilayer multiconfiguration time-dependent Hartree simulations. J Chem Phys 2016; 145:164105. [DOI: 10.1063/1.4965712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
| | - Michael Thoss
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058, Germany
| |
Collapse
|
31
|
Ding GH, Xiong B, Dong B. Transient currents of a single molecular junction with a vibrational mode. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:065301. [PMID: 26795556 DOI: 10.1088/0953-8984/28/6/065301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By using a propagation scheme for current matrices and an auxiliary mode expansion method, we investigate the transient dynamics of a single molecular junction coupled with a vibrational mode. Our approach is based on the spinless Anderson-Holstein model and the dressed tunnelling approximation for the electronic self-energy in the polaronic regime. The time-dependent currents after a sudden switching on the tunnelling to leads, an abrupt upward step bias pulse and a step potential on the quantum dot are calculated. We show that the strong electron-phonon interaction greatly influences the nonlinear response properties of the system, and gives rise to interesting characteristics on the time traces of transient currents.
Collapse
Affiliation(s)
- Guo-Hui Ding
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China. Collaborative Innovation Center of Advanced Microstructures, Nanjing, People's Republic of China
| | | | | |
Collapse
|
32
|
Manthe U. The multi-configurational time-dependent Hartree approach revisited. J Chem Phys 2015; 142:244109. [DOI: 10.1063/1.4922889] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Abstract
Multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory is a rigorous and powerful method to simulate quantum dynamics in complex many-body systems. This approach extends the original MCTDH theory of Meyer, Manthe, and Cederbaum to include dynamically contracted layers in a recursive way, within which the equations of motion are determined from the Dirac-Frenkel variational principle. This paper presents the general derivation of the theory and analyzes the important features that make the ML-MCTDH method numerically efficient. Furthermore, we discuss the generalization of the theory to treat many-body identical particles (fermions or bosons) as well as calculating energy eigenstates via the improved relaxation method.
Collapse
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
34
|
Simine L, Segal D. Electron transport in nanoscale junctions with local anharmonic modes. J Chem Phys 2014; 141:014704. [DOI: 10.1063/1.4885051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Wang H. Iterative Calculation of Energy Eigenstates Employing the Multilayer Multiconfiguration Time-Dependent Hartree Theory. J Phys Chem A 2014; 118:9253-61. [DOI: 10.1021/jp503351t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haobin Wang
- Beijing Computational Science Research Center, No.
3 He-Qing Road, Hai-Dian District, Beijing 100084, P.R. China
- Department of Chemistry
and
Biochemistry, MSC 3C, New Mexico State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
36
|
Li B, Miller WH, Levy TJ, Rabani E. Classical mapping for Hubbard operators: Application to the double-Anderson model. J Chem Phys 2014; 140:204106. [DOI: 10.1063/1.4878736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Cao L, Krönke S, Vendrell O, Schmelcher P. The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. J Chem Phys 2014; 139:134103. [PMID: 24116548 DOI: 10.1063/1.4821350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
Collapse
Affiliation(s)
- Lushuai Cao
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | | | | | |
Collapse
|
38
|
Li B, Wilner EY, Thoss M, Rabani E, Miller WH. A quasi-classical mapping approach to vibrationally coupled electron transport in molecular junctions. J Chem Phys 2014; 140:104110. [DOI: 10.1063/1.4867789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Simine L, Segal D. Path-integral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions. J Chem Phys 2013; 138:214111. [DOI: 10.1063/1.4808108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
Levy TJ, Rabani E. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach. J Chem Phys 2013; 138:164125. [PMID: 23635129 DOI: 10.1063/1.4802752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Collapse
Affiliation(s)
- Tal J Levy
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
41
|
Wang H, Thoss M. Numerically exact, time-dependent study of correlated electron transport in model molecular junctions. J Chem Phys 2013; 138:134704. [DOI: 10.1063/1.4798404] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Wang H, Thoss M. Multilayer Multiconfiguration Time-Dependent Hartree Study of Vibrationally Coupled Electron Transport Using the Scattering-State Representation. J Phys Chem A 2013; 117:7431-41. [DOI: 10.1021/jp401464b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Haobin Wang
- Department of Chemistry and Biochemistry, MSC 3C, New Mexico State University,
Las Cruces, New Mexico 88003, United States, and Beijing Computational Science Research Center, No. 3 He-Qing
Road, Hai-Dian District, Beijing 100084, P.R. China
| | - Michael Thoss
- Institute for Theoretical Physics and Interdisciplinary
Center for Molecular Materials, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Staudtstrasse 7/B2, D-91058, Germany
| |
Collapse
|
43
|
Levy TJ, Rabani E. Symmetry breaking and restoration using the equation-of-motion technique for nonequilibrium quantum impurity models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:115302. [PMID: 23406916 DOI: 10.1088/0953-8984/25/11/115302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The dynamics of correlated electrons in quantum impurity models is typically described within the nonequilibrium Green function formalism combined with a suitable approximation. One common approach is based on the equation-of-motion technique often used to describe different regimes of the dynamic response. Here, we show that this approach may violate certain symmetry relations that must be fulfilled by the definition of the Green functions. These broken symmetries can lead to unphysical behaviour. To circumvent this pathological shortcoming of the equation-of-motion approach we provide a scheme to restore basic symmetry relations. Illustrations are given for the Anderson and double Anderson impurity models.
Collapse
Affiliation(s)
- Tal J Levy
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
44
|
Li B, Levy TJ, Swenson DWH, Rabani E, Miller WH. A Cartesian quasi-classical model to nonequilibrium quantum transport: The Anderson impurity model. J Chem Phys 2013; 138:104110. [DOI: 10.1063/1.4793747] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Migliore A, Schiff P, Nitzan A. On the relationship between molecular state and single electron pictures in simple electrochemical junctions. Phys Chem Chem Phys 2012; 14:13746-53. [DOI: 10.1039/c2cp41442b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|