1
|
Roy A, Samanta S, Ray S, S SK, Mondal P. Unraveling the mystery of solvation-dependent fluorescence of fluorescein dianion using computational study. J Chem Phys 2024; 160:034302. [PMID: 38235793 DOI: 10.1063/5.0180218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Fluorescein, one of the brightest fluorescent dye molecules, is a widely used fluorophore for various applications from biomedicine to industry. The dianionic form of fluorescein is responsible for its high fluorescence quantum yield. Interestingly, the molecule was found to be nonfluorescent in the gas phase. This characteristic is attributed to the photodetachment process, which out-competes the fluorescence emission in the gas phase. In this work, we show that the calculated vertical and adiabatic detachment energies of fluorescein dianion in the gas and solvent phases account for the drastic differences observed in their fluorescence characteristics. The functional dependence of these detachment energies on the dianion's microsolvation was systematically investigated. The performance of different solvent models was also assessed. The higher thermodynamic stability of fluorescein dianion over the monoanion doublet in the solvent phase plays a crucial role in quenching photodetachment and activating the radiative channel with a high fluorescence quantum yield.
Collapse
Affiliation(s)
- Abheek Roy
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Suvadip Samanta
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Soumyadip Ray
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Sunil Kumar S
- Department of Physics and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
2
|
Zutterman F, Liégeois V, Champagne B. TDDFT Investigation of the Raman and Resonant Raman Spectra of Fluorescent Protein Chromophore Models. J Phys Chem B 2022; 126:3414-3424. [PMID: 35499480 DOI: 10.1021/acs.jpcb.2c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The off-resonance and resonant Raman spectra have been simulated for models of fluorescent protein chromophores, those of the green fluorescent protein (GFP, called FP1) and of DsRed (called FP2), which presents a longer π-conjugated path, with the aim of providing a systematic investigation of structural but also computational aspects. These were performed at the (time-dependent) density functional theory [(TD)DFT] level. The off-resonance intensities have been calculated from the derivatives of the frequency-dependent polarizability with respect to the normal coordinates while the resonant ones have been evaluated using Huang-Rhys factors determined from the gradients of the excitation energies with respect to the normal coordinates. When applied with the M05 meta-GGA exchange-correlation functional, this simple computational scheme can reproduce most of the experimental Raman signatures of FP1 in its protonated and deprotonated forms, the differences of vibrational signatures of the cis (Z) and trans (E) isomers, as well as their changes as a function of the excitation wavelength. On the other hand, testing the predictions made for FP2 would require new experimental work. It was also observed that simulations with methods that inadequately predict the resonant Raman spectra could nevertheless produce a UV-vis absorption spectrum that is quite similar to the one obtained with better methods, once realistic peak broadening has been applied.
Collapse
Affiliation(s)
- Freddy Zutterman
- Laboratoire de Chimie Théorique (LCT), Unité de Chimie-Physique Théorique et Structurale (UCPTS), NISM (Namur Institute of Structured Matter), Université de Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Vincent Liégeois
- Laboratoire de Chimie Théorique (LCT), Unité de Chimie-Physique Théorique et Structurale (UCPTS), NISM (Namur Institute of Structured Matter), Université de Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Benoît Champagne
- Laboratoire de Chimie Théorique (LCT), Unité de Chimie-Physique Théorique et Structurale (UCPTS), NISM (Namur Institute of Structured Matter), Université de Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
3
|
Ashworth EK, Stockett MH, Kjær C, Bulman Page PC, Meech SR, Nielsen SB, Bull JN. Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects. J Phys Chem A 2022; 126:1158-1167. [PMID: 35138862 DOI: 10.1021/acs.jpca.1c10628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photophysics of green fluorescent protein (GFP) and red Kaede fluorescent protein (rKFP) are defined by the intrinsic properties of the light-absorbing chromophore and its interaction with the protein binding pocket. This work deploys photodissociation action spectroscopy to probe the absorption profiles for a series of synthetic GFP and rKFP chromophores as the bare anions and as complexes with the betaine zwitterion, which is assumed as a model for dipole microsolvation. Electronic structure calculations and energy decomposition analysis using Symmetry-Adapted Perturbation Theory are used to characterize gas-phase structures and complex cohesion forces. The calculations reveal a preponderance for coordination of betaine to the phenoxide deprotonation site predominantly through electrostatic forces. Calculations using the STEOM-DLPNO-CCSD method are able to reproduce absolute and relative vertical excitation energies for the bare anions and anion-betaine complexes. On the other hand, treatment of the betaine molecule with a point-charge model, in which the charges are computed from some common electron density population analysis schemes, show that just electrostatic and point-charge induction interactions are unable to account for the betaine-induced spectral shift. The present methodology could be applied to investigate cluster forces and optical properties in other gas-phase ion-zwitterion complexes.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Philip C Bulman Page
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | - James N Bull
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
4
|
Gibbard JA, Castracane E, Krylov AI, Continetti RE. Photoelectron photofragment coincidence spectroscopy of aromatic carboxylates: benzoate and p-coumarate. Phys Chem Chem Phys 2021; 23:18414-18424. [PMID: 34612382 DOI: 10.1039/d1cp02972j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectron-photofragment coincidence spectroscopy was used to study the dissociation dynamics of the conjugate bases of benzoic acid and p-coumaric acid. Upon photodetachment at 266 nm (4.66 eV) both aromatic carboxylates undergo decarboxylation, as well as the formation of stable carboxyl radicals. The key energetics are computed using high-level electronic structure methods. The dissociation dynamics of benzoate were dominated by a two-body DPD channel resulting in CO2 + C6H5 + e-, with a very small amount of stable C6H5CO2 showing that the radical ground state is stable and the excited states are dissociative. For p-coumarate (p-CA-) the dominant channel is photodetachment resulting in a stable radical and a photoelectron with electron kinetic energy (eKE) <2 eV. We also observed a minor two-body dissociative photodetachment (DPD) channel resulting in CO2 + HOC6H4CHCH + e-, characterized by eKE <0.8 eV. Evidence was also found for a three-body ionic photodissociation channel producing HOC6H5 + HCC- + CO2. The ion beam contained both the phenolate and carboxylate isomers of p-CA-, but DPD only occurred from the carboxylate form. For both species DPD is seen from the first and second excited states of the radical, where vibrational excitation is required for decarboxylation from the first excited radical state.
Collapse
Affiliation(s)
- J A Gibbard
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0340, USA.
| | | | | | | |
Collapse
|
5
|
Raucci U, Perrella F, Donati G, Zoppi M, Petrone A, Rega N. Ab-initio molecular dynamics and hybrid explicit-implicit solvation model for aqueous and nonaqueous solvents: GFP chromophore in water and methanol solution as case study. J Comput Chem 2020; 41:2228-2239. [PMID: 32770577 DOI: 10.1002/jcc.26384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
Abstract
Solute-solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical-physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute-solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.
Collapse
Affiliation(s)
- Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Fulvio Perrella
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy.,Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Fisciano, Italy
| | - Maria Zoppi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Alessio Petrone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Naples, Italy
| |
Collapse
|
6
|
Zagorec-Marks W, Foreman MM, Verlet JRR, Weber JM. Probing the Microsolvation Environment of the Green Fluorescent Protein Chromophore In Vacuo. J Phys Chem Lett 2020; 11:1940-1946. [PMID: 32073271 DOI: 10.1021/acs.jpclett.0c00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present vibrational and electronic photodissociation spectra of a model chromophore of the green fluorescent protein in complexes with up to two water molecules, prepared in a cryogenic ion trap at 160-180 K. We find the band origin of the singly hydrated chromophore at 20 985 cm-1 (476.5 nm) and observe partially resolved vibrational signatures. While a single water molecule induces only a small shift of the S1 electronic band of the chromophore, without significant change of the Franck-Condon envelope, the spectrum of the dihydrate shows significant broadening and a greater blue shift of the band edge. Comparison of the vibrational spectra with predicted infrared spectra from density functional theory indicates that water molecules can interact with the oxygen atom on the phenolate group or on the imidazole moiety, respectively.
Collapse
Affiliation(s)
- Wyatt Zagorec-Marks
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
7
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
8
|
Nanda KD, Krylov AI. The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach. J Chem Phys 2018; 149:164109. [DOI: 10.1063/1.5048627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
9
|
Kajita K, Nakano H, Sato H. A theoretical study on the optical absorption of green fluorescent protein chromophore in solutions. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1315769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ken Kajita
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Hirano K, Nakano H, Nakao Y, Sato H, Sakaki S. Photo absorption of
p-coumaric acid in aqueous solution: RISM-SCF-SEDD theory approach. J Comput Chem 2017; 38:1567-1573. [DOI: 10.1002/jcc.24784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/01/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Kenji Hirano
- Department of Molecular Engineering; Kyoto University; Kyoto 615-8510 Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering; Kyoto University; Kyoto 615-8510 Japan
| | - Yoshihide Nakao
- Department of Molecular Engineering; Kyoto University; Kyoto 615-8510 Japan
| | - Hirofumi Sato
- Department of Molecular Engineering; Kyoto University; Kyoto 615-8510 Japan
| | - Shigeyoshi Sakaki
- Department of Molecular Engineering; Kyoto University; Kyoto 615-8510 Japan
| |
Collapse
|
11
|
McLaughlin C, Assmann M, Parkes MA, Woodhouse JL, Lewin R, Hailes HC, Worth GA, Fielding HH. ortho and para chromophores of green fluorescent protein: controlling electron emission and internal conversion. Chem Sci 2017; 8:1621-1630. [PMID: 29780449 PMCID: PMC5933426 DOI: 10.1039/c6sc03833f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/05/2016] [Indexed: 12/22/2022] Open
Abstract
Green fluorescent protein (GFP) continues to play an important role in the biological and biochemical sciences as an efficient fluorescent probe and is also known to undergo light-induced redox transformations. Here, we employ photoelectron spectroscopy and quantum chemistry calculations to investigate how the phenoxide moiety controls the competition between electron emission and internal conversion in the isolated GFP chromophore anion, following photoexcitation with ultraviolet light in the range 400-230 nm. We find that moving the phenoxide group from the para position to the ortho position enhances internal conversion back to the ground electronic state but that adding an additional OH group to the para chromophore, at the ortho position, impedes internal conversion. Guided by quantum chemistry calculations, we interpret these observations in terms of torsions around the C-C-C bridge being enhanced by electrostatic repulsions or impeded by the formation of a hydrogen-bonded seven-membered ring. We also find that moving the phenoxide group from the para position to the ortho position reduces the energy required for detachment processes, whereas adding an additional OH group to the para chromophore at the ortho position increases the energy required for detachment processes. These results have potential applications in tuning light-induced redox processes of this biologically and technologically important fluorescent protein.
Collapse
Affiliation(s)
- Conor McLaughlin
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Mariana Assmann
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Michael A Parkes
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Joanne L Woodhouse
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Ross Lewin
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Helen C Hailes
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Graham A Worth
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Helen H Fielding
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| |
Collapse
|
12
|
Bhaskaran-Nair K, Valiev M, Deng SHM, Shelton WA, Kowalski K, Wang XB. Probing microhydration effect on the electronic structure of the GFP chromophore anion: Photoelectron spectroscopy and theoretical investigations. J Chem Phys 2016; 143:224301. [PMID: 26671369 DOI: 10.1063/1.4936252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The photophysics of the Green Fluorescent Protein (GFP) chromophore is critically dependent on its local structure and on its environment. Despite extensive experimental and computational studies, there remain many open questions regarding the key fundamental variables that govern this process. One outstanding problem is the role of autoionization as a possible relaxation pathway of the excited state under different environmental conditions. This issue is considered in our work through combined experimental and theoretical studies of microsolvated clusters of the deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone anion (HBDI(-)), an analog of the GFP chromophore. Through selective generation of microsolvated structures of predetermined size and subsequent analysis of experimental photoelectron spectra by high level ab initio methods, we are able to precisely identify the structure of the system, establish the accuracy of theoretical data, and provide reliable description of auto-ionization process as a function of hydrogen-bonding environment. Our study clearly illustrates the first few water molecules progressively stabilize the excited state of the chromophore anion against the autodetached neutral state, which should be an important trait for crystallographic water molecules in GFPs that has not been fully explored to date.
Collapse
Affiliation(s)
- Kiran Bhaskaran-Nair
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Marat Valiev
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - S H M Deng
- Physical Sciences Division, Pacific Northwest National Laboratory, K8-88, P.O. Box 999, Richland, Washington 99352, USA
| | - William A Shelton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, K8-88, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
13
|
Parkes MA, Phillips C, Porter MJ, Fielding HH. Controlling electron emission from the photoactive yellow protein chromophore by substitution at the coumaric acid group. Phys Chem Chem Phys 2016; 18:10329-36. [PMID: 27025529 DOI: 10.1039/c6cp00565a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Understanding how the interactions between a chromophore and its surrounding protein control the function of a photoactive protein remains a challenge. Here, we present the results of photoelectron spectroscopy measurements and quantum chemistry calculations aimed at investigating how substitution at the coumaryl tail of the photoactive yellow protein chromophore controls competing relaxation pathways following photoexcitation of isolated chromophores in the gas phase with ultraviolet light in the range 350-315 nm. The photoelectron spectra are dominated by electrons resulting from direct detachment and fast detachment from the 2(1)ππ* state but also have a low electron kinetic energy component arising from autodetachment from lower lying electronically excited states or thermionic emission from the electronic ground state. We find that substituting the hydrogen atom of the carboxylic acid group with a methyl group lowers the threshold for electron detachment but has very little effect on the competition between the different relaxation pathways, whereas substituting with a thioester group raises the threshold for electron detachment and appears to 'turn off' the competing electron emission processes from lower lying electronically excited states. This has potential implications in terms of tuning the light-induced electron donor properties of photoactive yellow protein.
Collapse
Affiliation(s)
- Michael A Parkes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | | | | | |
Collapse
|
14
|
Houmøller J, Wanko M, Rubio A, Nielsen SB. Effect of a Single Water Molecule on the Electronic Absorption by o- and p-Nitrophenolate: A Shift to the Red or to the Blue? J Phys Chem A 2015; 119:11498-503. [PMID: 26549521 DOI: 10.1021/acs.jpca.5b08634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many photoactive biomolecules are anions and exhibit ππ* optical transitions but with a degree of charge transfer (CT) character determined by the local environment. The phenolate moiety is a common structural motif among biochromophores and luminophores, and nitrophenolates are good model systems because the nitro substituent allows for CT-like transitions. Here we report gas-phase absorption spectra of o- and p-nitrophenolate·H2O complexes to decipher the effect of just one H2O and compare them with ab initio calculations of vertical excitation energies. The experimental band maximum is at 3.01 and 3.00 eV for ortho and para isomers, respectively, and is red-shifted by 0.10 and 0.13 eV relative to the bare ions, respectively. These shifts indicate that the transition has become more CT-like because of localization of negative charge on the phenolate oxygen, i.e., diminished delocalization of the negative excess charge. However, the transition bears less CT than that of m-nitrophenolate·H2O because this complex absorbs further to the red (2.56 eV). Our work emphasizes the importance of local perturbations: one water causes a larger shift than experienced in bulk for para isomer and almost the full shift for ortho isomer. Predicting microenvironmental effects in the boundary between CT and non-CT with high accuracy is nontrivial. However, in agreement with experiment, our calculations show a competition between the effects of electronic delocalization and electrostatic interaction with the solvent molecule. As a result, the excitation energy of ortho and para isomers is less sensitive to hydration than that of the meta isomer because donor and acceptor orbitals are only weakly coupled in the meta isomer.
Collapse
Affiliation(s)
- Jørgen Houmøller
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Marius Wanko
- Nano-Bio Spectroscopy Group and ETSF, Dpto. Fisica de Materiales, Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC & DIPC, 20018 San Sebastián, Spain
| | - Angel Rubio
- Nano-Bio Spectroscopy Group and ETSF, Dpto. Fisica de Materiales, Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC & DIPC, 20018 San Sebastián, Spain.,Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | |
Collapse
|
15
|
Zuev D, Vecharynski E, Yang C, Orms N, Krylov AI. New algorithms for iterative matrix‐free eigensolvers in quantum chemistry. J Comput Chem 2014; 36:273-84. [DOI: 10.1002/jcc.23800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/25/2014] [Accepted: 11/02/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Dmitry Zuev
- Department of ChemistryUniversity of Southern CaliforniaLos Angeles California90089‐0482
| | - Eugene Vecharynski
- Computational Research DivisionLawrence Berkeley National LaboratoryBerkeley California94720
| | - Chao Yang
- Computational Research DivisionLawrence Berkeley National LaboratoryBerkeley California94720
| | - Natalie Orms
- Department of ChemistryUniversity of Southern CaliforniaLos Angeles California90089‐0482
| | - Anna I. Krylov
- Department of ChemistryUniversity of Southern CaliforniaLos Angeles California90089‐0482
| |
Collapse
|
16
|
Zuev D, Jagau TC, Bravaya KB, Epifanovsky E, Shao Y, Sundstrom E, Head-Gordon M, Krylov AI. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks. J Chem Phys 2014; 141:024102. [DOI: 10.1063/1.4885056] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dmitry Zuev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Thomas-C. Jagau
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, USA
| | - Evgeny Epifanovsky
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Q-Chem, Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588, USA
| | - Yihan Shao
- Q-Chem, Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588, USA
| | - Eric Sundstrom
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
17
|
Nielsen SB, Nielsen MB, Rubio A. Spectroscopy of nitrophenolates in vacuo: effect of spacer, configuration, and microsolvation on the charge-transfer excitation energy. Acc Chem Res 2014; 47:1417-25. [PMID: 24673172 DOI: 10.1021/ar500025h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a charge-transfer (CT) transition, electron density moves from one end of the molecule (donor) to the other end (acceptor). This type of transition is of paramount importance in nature, for example, in photosynthesis, and it governs the excitation of several protein biochromophores and luminophores such as the oxyluciferin anion that accounts for light emission from fireflies. Both transition energy and oscillator strength are linked to the coupling between the donor and acceptor groups: The weaker the coupling, the smaller the excitation energy. But a weak coupling necessarily also causes a low oscillator strength possibly preventing direct excitation (basically zero probability in the noncoupling case). The coupling is determined by the actual spacer between the two groups, and whether the spacer acts as an insulator or a conductor. However, it can be difficult or even impossible to distinguish the effect of the spacer from that of local solvent molecules that often cause large solvent shifts due to different ground-state and excited-state stabilization. This calls for gas-phase spectroscopy experiments where absorption by the isolated molecule is identified to unequivocally establish the intrinsic molecular properties with no perturbations from a microenvironment. From such insight, the effect of a protein microenvironment on the CT excited state can be deduced. In this Account, we review our results over the last 5 years from mass spectroscopy experiments using specially designed apparatus on several charged donor-acceptor ions that are based on the nitrophenolate moiety and π-extended derivatives, which are textbook examples of donor-acceptor chromophores. The phenolate oxygen is the donor, and the nitro group is the acceptor. The choice of this system is also based on the fact that phenolate is a common structural motif of biochromophores and luminophores, for example, it is a constituent of the oxyluciferin anion. A presentation of the setups used for gas-phase ion spectroscopy in Aarhus is given, and we address issues of whether double bonds or triple bonds best convey electronic coupling between the phenolate oxygen and the nitro group, the significance of separating the donor and acceptor spatially, the influence of cross-conjugation versus linear conjugation, and along this line ortho versus meta versus para configuration, and not least the effect of a single solvent molecule (water, methanol, or acetonitrile). From systematic studies, a clear picture has emerged that has been supported by high-level calculations of electronically excited states. Our work shows that CC2 coupled-cluster calculations of vertical excitation energies are within 0.2 eV of experimental band maxima, and importantly, that the theoretical method is excellent in predicting the relative order of excitation energies of a series of nitrophenolates. Finally, we discuss future challenges such as following the change in absorption as a function of the number of solvent molecules and when gradually approaching the bulk limit.
Collapse
Affiliation(s)
- Steen Brøndsted Nielsen
- Department
of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry & Center for Exploitation of Solar Energy, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Angel Rubio
- NanoBio Spectroscopy
Group and ETSF Centre for Scientific Development, Centro Mixto CSICUPV/EHU
“Fisica de Materiales”, University of the Basque Country
UPV/EHU Centro Joxe Mari Korta, Avenida
de Tolosa, 72, E-20018 Donostia-San Sebastian, Spain
| |
Collapse
|
18
|
Ataelahi M, Omidyan R. Microhydration effects on the electronic properties of protonated phenol: a theoretical study. J Phys Chem A 2013; 117:12842-50. [PMID: 24191660 DOI: 10.1021/jp409537s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CC2 (second-order approximate coupled cluster method) has been employed to investigate microhydration effect on electronic properties of protonated phenol (PhH(+)) According to the CC2 calculation results on electronic excited states of microhydrated PhH(+), for the S1 and S2 electronic states, which are of (1)ππ* nature and belong to the A' representation of molecular Cs point group, a significant blue shift effect on the S1 and S2 electronic states, which are of 1ππ* nature and belong to the A' representation of molecular Cs point group, in comparison to corresponding transitions on bare cation (PhH(+)), has been predicted. Nevertheless, for the S3-S0 (1A'', 1σπ*) transition, a large red shift effect has been predicted. Furthermore, it has been found that the lowest (1)σπ* state plays a prominent role in the photochemistry of these systems. In the bare protonated phenol, the (1)σπ* state is a bound state with a broad potential curve along the OH stretching coordinate, while it is dissociative in microhydrated species. This indicates to a predissociation of the S1((1)ππ*) state by a low-lying (1)σπ* state, which leads the excited system to a concerted proton-transfer reaction from protonated chromophore to the solvent. The dissociative (1)σπ* state in monohydrated PhH(+) has small barrier, while increasing the solvent molecules up to three removes the barrier and consequently expedites the proton-transfer reaction dynamics.
Collapse
Affiliation(s)
- Mitra Ataelahi
- Department of Chemistry, University of Isfahan , 81746-73441 Isfahan, Iran
| | | |
Collapse
|
19
|
Petrone A, Caruso P, Tenuta S, Rega N. On the optical absorption of the anionic GFP chromophore in vacuum, solution, and protein. Phys Chem Chem Phys 2013; 15:20536-44. [PMID: 24177429 DOI: 10.1039/c3cp52820k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In spite of the large number of experimental and theoretical studies, the optical absorption trend of the green fluorescent protein (GFP) chromophore in several environments has not been fully understood. We calculated at the same level of time dependent density functional theory the vertical excitation energy of the anionic GFP chromophore in the protein and in ethanol, dioxane, methanol and water solutions. As result, we reproduced for the first time the experimental trend of the absorption peaks with 0.015 eV as the standard deviation of the accuracy. This systematic error allowed us to analyze with confidence the relative weight of several solvation effects on the vertical excitation energy. Experimental trends not correlated with the solvent polarity were therefore explained with a fine balance of different steric and electronic effects on the photophysics of the chromophore. As an indirect and remarkable result, the present analysis confirms that the optical absorption of the chromophore in the gas phase is close to the value of 2.84 eV extrapolated by Dong et al. (J. Am. Chem. Soc., 2006, 128, 12038), and, as a consequence, that the protein environment induces a red shift of 0.23 eV.
Collapse
Affiliation(s)
- Alessio Petrone
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy.
| | | | | | | |
Collapse
|
20
|
García-Prieto FF, Galván IF, Muñoz-Losa A, Aguilar MA, Martín ME. Solvent Effects on the Absorption Spectra of the para-Coumaric Acid Chromophore in Its Different Protonation Forms. J Chem Theory Comput 2013; 9:4481-94. [DOI: 10.1021/ct400145z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco F. García-Prieto
- Química
Física. Edif. José María Viguera Lobo, Universidad de Extremadura, Avda. de
Elvas s/n, 06071 Badajoz, Spain
| | - Ignacio Fdez. Galván
- Química
Física. Edif. José María Viguera Lobo, Universidad de Extremadura, Avda. de
Elvas s/n, 06071 Badajoz, Spain
- Department
of Chemistry, Ångström, The Theoretical Chemistry
Programme, Uppsala University, P.O. Box 518, SE-751 20 Uppsala, Sweden
| | - Aurora Muñoz-Losa
- Química
Física. Edif. José María Viguera Lobo, Universidad de Extremadura, Avda. de
Elvas s/n, 06071 Badajoz, Spain
| | - Manuel A. Aguilar
- Química
Física. Edif. José María Viguera Lobo, Universidad de Extremadura, Avda. de
Elvas s/n, 06071 Badajoz, Spain
| | - M. Elena Martín
- Química
Física. Edif. José María Viguera Lobo, Universidad de Extremadura, Avda. de
Elvas s/n, 06071 Badajoz, Spain
| |
Collapse
|
21
|
Houmøller J, Wanko M, Støchkel K, Rubio A, Brøndsted Nielsen S. On the Effect of a Single Solvent Molecule on the Charge-Transfer Band of a Donor–Acceptor Anion. J Am Chem Soc 2013; 135:6818-21. [DOI: 10.1021/ja4025275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jørgen Houmøller
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus
C, Denmark
| | - Marius Wanko
- Nano-Bio Spectroscopy
Group
and ETSF Scientific Development Centre, Departamento de Fisica de
Materiales, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Fisica de
Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebastian,
Spain
| | - Kristian Støchkel
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus
C, Denmark
| | - Angel Rubio
- Nano-Bio Spectroscopy
Group
and ETSF Scientific Development Centre, Departamento de Fisica de
Materiales, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Fisica de
Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebastian,
Spain
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus
C, Denmark
| |
Collapse
|
22
|
Houmøller J, Kaufman SH, Støchkel K, Tribedi LC, Brøndsted Nielsen S, Weber JM. On the Photoabsorption by Permanganate Ions in Vacuo and the Role of a Single Water Molecule. New Experimental Benchmarks for Electronic Structure Theory. Chemphyschem 2013; 14:1133-7. [DOI: 10.1002/cphc.201300019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 11/07/2022]
|
23
|
Tan EMM, Amirjalayer S, Bakker BH, Buma WJ. Excited state dynamics of Photoactive Yellow Protein chromophores elucidated by high-resolution spectroscopy and ab initio calculations. Faraday Discuss 2013; 163:321-40; discussion 393-432. [DOI: 10.1039/c2fd20139a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Gozem S, Krylov AI, Olivucci M. Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods. J Chem Theory Comput 2012; 9:284-92. [DOI: 10.1021/ct300759z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Anna I. Krylov
- Department of Chemistry, University
of Southern California, Los Angeles, California 90089-0482, United
States
| | - Massimo Olivucci
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Chimica,
Università
di Siena, via De Gasperi 2, I-53100 Siena, Italy
| |
Collapse
|
25
|
Olsen S, McKenzie RH. A two-state model of twisted intramolecular charge-transfer in monomethine dyes. J Chem Phys 2012; 137:164319. [DOI: 10.1063/1.4762561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
26
|
Laurent AD, Mironov VA, Chapagain PP, Nemukhin AV, Krylov AI. Exploring structural and optical properties of fluorescent proteins by squeezing: modeling high-pressure effects on the mStrawberry and mCherry red fluorescent proteins. J Phys Chem B 2012; 116:12426-40. [PMID: 22988813 PMCID: PMC3500579 DOI: 10.1021/jp3060944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molecular dynamics calculations of pressure effects on mStrawberry and mCherry fluorescent proteins are reported. The simulations reveal that mStrawberry has much floppier structure at atmospheric pressure, as evidenced by larger backbone fluctuations and the coexistence of two conformers that differ by Ser146 orientation. Consequently, pressure increase has a larger effect on mStrawberry, making its structure more rigid and reducing the population of one of the conformers. The most significant effect of pressure increase is in the hydrogen-bonding network between the chromophore and the nearby residues. The quantum-mechanics/molecular mechanics calculations of excitation energies in mStrawberry explain the observed blue shift and identify Lys70 as the residue that has the most pronounced effect on the spectra. The results suggest that pressure increase causes an initial increase of fluorescence yield only for relatively floppy fluorescent proteins, whereas the fluorescent proteins that have more rigid structures have quantum yields close to their maximum. The results suggest that a low quantum yield in fluorescent proteins is dynamic in nature and depends on the range of thermal motions of the chromophore and fluctuations in the H-bonding network rather than on their average structure.
Collapse
|
27
|
Ghosh D, Acharya A, Tiwari SC, Krylov AI. Toward understanding the redox properties of model chromophores from the green fluorescent protein family: an interplay between conjugation, resonance stabilization, and solvent effects. J Phys Chem B 2012; 116:12398-405. [PMID: 22978512 DOI: 10.1021/jp305022t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The redox properties of model chromophores from the green fluorescent protein family are characterized computationally using density functional theory with a long-range corrected functional, the equation-of-motion coupled-cluster method, and implicit solvation models. The analysis of electron-donating abilities of the chromophores reveals an intricate interplay between the size of the chromophore, conjugation, resonance stabilization, presence of heteroatoms, and solvent effects. Our best estimates of the gas-phase vertical/adiabatic detachment energies of the deprotonated (i.e., anionic) model red, green, and blue chromophores are 3.27/3.15, 2.79/2.67, and 2.75/2.35 eV, respectively. Vertical/adiabatic ionization energies of the respective protonated (i.e., neutral) species are 7.64/7.35, 7.38/7.15, and 7.70/7.32 eV, respectively. The standard reduction potentials (E(red)(0)) of the anionic (Chr•/Chr–) and neutral (Chr+•/Chr) model chromophores in acetonitrile are 0.34/1.40 V (red), 0.22/1.24 V (green), and −0.12/1.02 V (blue), suggesting, counterintuitively, that the red chromophore is more difficult to oxidize than the green and blue ones (in both neutral and deprotonated forms). The respective redox potentials in water follow a similar trend but are more positive than the acetonitrile values.
Collapse
Affiliation(s)
- Debashree Ghosh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | | | | | | |
Collapse
|
28
|
Almasian M, Grzetic J, van Maurik J, Steill JD, Berden G, Ingemann S, Buma WJ, Oomens J. Non-Equilibrium Isomer Distribution of the Gas-Phase Photoactive Yellow Protein Chromophore. J Phys Chem Lett 2012; 3:2259-2263. [PMID: 26295780 DOI: 10.1021/jz300780t] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The conjugate base of para-coumaric acid, which can be conveniently generated in the gas phase by electrospray ionization (ESI), is a commonly used model system for the chromophore of the photoactive yellow protein. Here we report its gas-phase IR spectrum, which shows that the anion easily adopts a carboxylate structure lying 60 kJ/mol higher in energy than the global minimum phenoxide structure. Generation of the biologically more relevant phenoxide isomer by ESI can be achieved using dry acetonitrile as solvent.
Collapse
Affiliation(s)
- Mitra Almasian
- †FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439MN Nieuwegein, The Netherlands
- ‡van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Josipa Grzetic
- †FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439MN Nieuwegein, The Netherlands
| | - Johanne van Maurik
- †FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439MN Nieuwegein, The Netherlands
- ‡van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jeffrey D Steill
- †FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439MN Nieuwegein, The Netherlands
| | - Giel Berden
- †FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439MN Nieuwegein, The Netherlands
| | - Steen Ingemann
- ‡van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Wybren Jan Buma
- ‡van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jos Oomens
- †FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439MN Nieuwegein, The Netherlands
- ‡van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- §Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
29
|
Minezawa N, Gordon MS. Optimizing conical intersections of solvated molecules: The combined spin-flip density functional theory/effective fragment potential method. J Chem Phys 2012; 137:034116. [DOI: 10.1063/1.4734314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Mooney CRS, Sanz ME, McKay AR, Fitzmaurice RJ, Aliev AE, Caddick S, Fielding HH. Photodetachment Spectra of Deprotonated Fluorescent Protein Chromophore Anions. J Phys Chem A 2012; 116:7943-9. [DOI: 10.1021/jp3058349] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ciarán R. S. Mooney
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - M. Eugenia Sanz
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Department of Chemistry, School of Biomedical Sciences, King’s College London, Guy’s Campus,
London SE1 1UL, U.K
| | - Adam R. McKay
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Richard J. Fitzmaurice
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Abil E. Aliev
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Stephen Caddick
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Helen H. Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|