1
|
Du M, Pérez-Sánchez JB, Campos-Gonzalez-Angulo JA, Koner A, Mellini F, Pannir-Sivajothi S, Poh YR, Schwennicke K, Sun K, van den Wildenberg S, Karzen D, Barron A, Yuen-Zhou J. Chiral edge waves in a dance-based human topological insulator. SCIENCE ADVANCES 2024; 10:eadh7810. [PMID: 39196944 PMCID: PMC11352905 DOI: 10.1126/sciadv.adh7810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/25/2024] [Indexed: 08/30/2024]
Abstract
Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials, topologically protected boundary transport has since been observed in many other physical systems. Thus, it is natural to ask whether this phenomenon finds relevance in a broader context. We choreograph a dance in which a group of humans, arranged on a square grid, behave as a topological insulator. The dance features unidirectional flow of movement through dancers on the lattice edge. This effect persists when people are removed from the dance floor. Our work extends the applicability of wave physics to dance.
Collapse
Affiliation(s)
- Matthew Du
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Juan B. Pérez-Sánchez
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Arghadip Koner
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Federico Mellini
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sindhana Pannir-Sivajothi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yong Rui Poh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Schwennicke
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunyang Sun
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Dylan Karzen
- Orange Glen High School, Escondido, CA 92027, USA
| | - Alec Barron
- Center For Research On Educational Equity, Assessment and Teaching Excellence, University of California San Diego, La Jolla, CA 92093, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Wang L, Zhang K, Wang J. Early warning indicators of war and peace through the landscapes and flux quantifications. Phys Rev E 2024; 109:034311. [PMID: 38632735 DOI: 10.1103/physreve.109.034311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
War and peace, spanning history, deeply affect society, economy, and individuals. Grasping their dynamics is vital to lessen harm and foster global peace. Yet, quantifying them remains hard. Our goal is to create a simple qualitative model using landscape and flux theory, exploring war and peace mechanisms. In this symmetric network, they appear as separate attraction basins, dynamically shifting. Analyzing landscape shape gives insights into global stability. Near critical points, indicators like cross correlations, autocorrelation times, and flickering frequency surge, as warnings. We also calculate the irreversible path between war and peace due to rotational flux. Global sensitivity analysis identifies history's role in system stability. In summary, our research unveils a way to understand war and peace complexities, enhancing knowledge of key elements that lead to conflict, aiding resolution.
Collapse
Affiliation(s)
- Linqi Wang
- Center of Theoretical Physics, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jin Wang
- Department of Chemistry and Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
3
|
Wang X, Wu Y, Xu L, Wang J. Global dynamics, thermodynamics and non-equilibrium origin of bifurcations for single neuron dynamics. J Chem Phys 2023; 159:154105. [PMID: 37850693 DOI: 10.1063/5.0169296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The understanding of neural excitability and oscillations in single neuron dynamics remains incomplete in terms of global stabilities and the underlying mechanisms for phase formation and associated phase transitions. In this study, we investigate the mechanism of single neuron excitability and spontaneous oscillations by analyzing the potential landscape and curl flux. The topological features of the landscape play a crucial role in assessing the stability of resting states and the robustness/coherence of oscillations. We analyze the excitation characteristics in Class I and Class II neurons and establish their relation to biological function. Our findings reveal that the average curl flux and associated entropy production exhibit significant changes near bifurcation or phase transition points. Moreover, the curl flux and entropy production offer insights into the dynamical and thermodynamical origins of nonequilibrium phase transitions and exhibit distinct behaviors in Class I and Class II neurons. Additionally, we quantify time irreversibility through the difference in cross-correlation functions in both forward and backward time, providing potential indicators for the emergence of nonequilibrium phase transitions in single neurons.
Collapse
Affiliation(s)
- Xiaochen Wang
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Yuxuan Wu
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Liufang Xu
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
4
|
Li S, Liu Q, Wang E, Wang J. Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone. iScience 2023; 26:107885. [PMID: 37766979 PMCID: PMC10520453 DOI: 10.1016/j.isci.2023.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-cycle arrest and polarized growth are commonly used to characterize the response of yeast to pheromone. However, the quantitative decision-making processes underlying time-dependent changes in cell fate remain unclear. In this study, we conducted single-cell level experiments to observe multidimensional responses, uncovering diverse fates of yeast cells. Multiple states are revealed, along with the kinetic switching rates and pathways among them, giving rise to a quantitative landscape of mating response. To quantify the experimentally observed cell fates, we developed a theoretical framework based on non-equilibrium landscape and flux theory. Additionally, we performed stochastic simulations of biochemical reactions to elucidate signal transduction and cell growth. Notably, our experimental findings have provided the first global quantitative evidence of the real-time synchronization between intracellular signaling, physiological growth, and morphological functions. These results validate the proposed underlying mechanism governing the emergence of multiple cell fate states. This study introduces an emerging mechanistic approach to understand non-equilibrium cell fate decision-making in response to pheromone.
Collapse
Affiliation(s)
- Sheng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
5
|
Li S, Liu Q, Wang E, Wang J. Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction. BIOPHYSICS REVIEWS 2023; 4:031401. [PMID: 38510708 PMCID: PMC10903495 DOI: 10.1063/5.0157759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 03/22/2024]
Abstract
Cellular responses to pheromone in yeast can range from gene expression to morphological and physiological changes. While signaling pathways are well studied, the cell fate decision-making during cellular polar growth is still unclear. Quantifying these cellular behaviors and revealing the underlying physical mechanism remain a significant challenge. Here, we employed a hidden Markov chain model to quantify the dynamics of cellular morphological systems based on our experimentally observed time series. The resulting statistics generated a stability landscape for state attractors. By quantifying rotational fluxes as the non-equilibrium driving force that tends to disrupt the current attractor state, the dynamical origin of non-equilibrium phase transition from four cell morphological fates to a single dominant fate was identified. We revealed that higher chemical voltage differences induced by a high dose of pheromone resulted in higher chemical currents, which will trigger a greater net input and, thus, more degrees of the detailed balance breaking. By quantifying the thermodynamic cost of maintaining morphological state stability, we demonstrated that the flux-related entropy production rate provides a thermodynamic origin for the phase transition in non-equilibrium morphologies. Furthermore, we confirmed that the time irreversibility in time series provides a practical way to predict the non-equilibrium phase transition.
Collapse
Affiliation(s)
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | - Jin Wang
- Department of Chemistry and of Physics and astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
6
|
O'Byrne J. Nonequilibrium currents in stochastic field theories: A geometric insight. Phys Rev E 2023; 107:054105. [PMID: 37329107 DOI: 10.1103/physreve.107.054105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 06/18/2023]
Abstract
We introduce a formalism to study nonequilibrium steady-state probability currents in stochastic field theories. We show that generalizing the exterior derivative to functional spaces allows identification of the subspaces in which the system undergoes local rotations. In turn, this allows prediction of the counterparts in the real, physical space of these abstract probability currents. The results are presented for the case of the Active Model B undergoing motility-induced phase separation, which is known to be out of equilibrium but whose steady-state currents have not yet been observed, as well as for the Kardar-Parisi-Zhang equation. We locate and measure these currents and show that they manifest in real space as propagating modes localized in regions with nonvanishing gradients of the fields.
Collapse
Affiliation(s)
- J O'Byrne
- Université Paris-Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France and DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
7
|
Perspectives on the landscape and flux theory for describing emergent behaviors of the biological systems. J Biol Phys 2022; 48:1-36. [PMID: 34822073 PMCID: PMC8866630 DOI: 10.1007/s10867-021-09586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 10/19/2022] Open
Abstract
We give a review on the landscape theory of the equilibrium biological systems and landscape-flux theory of the nonequilibrium biological systems as the global driving force. The emergences of the behaviors, the associated thermodynamics in terms of the entropy and free energy and dynamics in terms of the rate and paths have been quantitatively demonstrated. The hierarchical organization structures have been discussed. The biological applications ranging from protein folding, biomolecular recognition, specificity, biomolecular evolution and design for equilibrium systems as well as cell cycle, differentiation and development, cancer, neural networks and brain function, and evolution for nonequilibrium systems, cross-scale studies of genome structural dynamics and experimental quantifications/verifications of the landscape and flux are illustrated. Together, this gives an overall global physical and quantitative picture in terms of the landscape and flux for the behaviors, dynamics and functions of biological systems.
Collapse
|
8
|
Wu Y, Jiao Y, Zhao Y, Jia H, Xu L. Noise-induced quasiperiod and period switching. Phys Rev E 2022; 105:014419. [PMID: 35193235 DOI: 10.1103/physreve.105.014419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
We employ a typical genetic circuit model to explore how noise can influence dynamic structure. With the increase of a key interactive parameter, the model will deterministically go through two bifurcations and three dynamic structure regions. We find that a quasiperiodic component, which is not allowed by deterministic dynamics, will be generated by noise inducing in the first two regions, and this quasiperiod will be more and more stable along with the increase in noise. In particular, in the second region the quasiperiod will compete with a stable limit cycle and perform a new transient rhythm. Furthermore, we ascertain the entropy production rate and the heat dissipation rate, and discover a minimal value with theoretical elucidation. In the end, we unveil the mechanism of the formation of quasiperiods, and show a practical biological example. We expect this work to be helpful in solving some biological or ecological problems, such as the genetic origin of periodical cicadas and population dynamics with fluctuation.
Collapse
Affiliation(s)
- Yuxuan Wu
- Biophysics & Complex System Center, Center of Theoretical Physics, College of Physics, Jilin University Changchun 130012, People's Republic of China
| | - Yuxing Jiao
- Biophysics & Complex System Center, Center of Theoretical Physics, College of Physics, Jilin University Changchun 130012, People's Republic of China
| | - Yanzhen Zhao
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Haojun Jia
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Liufang Xu
- Biophysics & Complex System Center, Center of Theoretical Physics, College of Physics, Jilin University Changchun 130012, People's Republic of China
| |
Collapse
|
9
|
Bhattacharyya B, Wang J, Sasai M. Stochastic epigenetic dynamics of gene switching. Phys Rev E 2021; 102:042408. [PMID: 33212709 DOI: 10.1103/physreve.102.042408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Epigenetic modifications of histones crucially affect eukaryotic gene activity, while the epigenetic histone state is largely determined by the binding of specific factors such as the transcription factors (TFs) to DNA. Here, the way in which the TFs and the histone state are dynamically correlated is not obvious when the TF synthesis is regulated by the histone state. This type of feedback regulatory relation is ubiquitous in gene networks to determine cell fate in differentiation and other cell transformations. To gain insights into such dynamical feedback regulations, we theoretically analyze a model of epigenetic gene switching by extending the Doi-Peliti operator formalism of reaction kinetics to the problem of coupled molecular processes. Spin-1 and spin-1/2 coherent-state representations are introduced to describe stochastic reactions of histones and binding or unbinding of TFs in a unified way, which provides a concise view of the effects of timescale difference among these molecular processes; even in the case that binding or unbinding of TFs to or from DNA is adiabatically fast, the slow nonadiabatic histone dynamics gives rise to a distinct circular flow of the probability flux around basins in the landscape of the gene state distribution, which leads to hysteresis in gene switching. In contrast to the general belief that the change in the amount of TF precedes the histone state change, flux drives histones to be modified prior to the change in the amount of TF in self-regulating circuits. Flux-landscape analyses shed light on the nonlinear nonadiabatic mechanism of epigenetic cell fate decision making.
Collapse
Affiliation(s)
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
10
|
Abstract
Cells adapt to changing environments. Perturb a cell and it returns to a point of homeostasis. Perturb a population and it evolves toward a fitness peak. We review quantitative models of the forces of adaptation and their visualizations on landscapes. While some adaptations result from single mutations or few-gene effects, others are more cooperative, more delocalized in the genome, and more universal and physical. For example, homeostasis and evolution depend on protein folding and aggregation, energy and protein production, protein diffusion, molecular motor speeds and efficiencies, and protein expression levels. Models provide a way to learn about the fitness of cells and cell populations by making and testing hypotheses.
Collapse
Affiliation(s)
- Luca Agozzino
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; .,Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; .,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Wang
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; .,Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, USA
| | - Ken A Dill
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; .,Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, USA
| |
Collapse
|
11
|
Fang X, Wang J. Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems. Annu Rev Biophys 2020; 49:227-246. [DOI: 10.1146/annurev-biophys-121219-081656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We discuss new developments in the nonequilibrium dynamics and thermodynamics of living systems, giving a few examples to demonstrate the importance of nonequilibrium thermodynamics for understanding biological dynamics and functions. We study single-molecule enzyme dynamics, in which the nonequilibrium thermodynamic and dynamic driving forces of chemical potential and flux are crucial for the emergence of non-Michaelis-Menten kinetics. We explore single-gene expression dynamics, in which nonequilibrium dissipation can suppress fluctuations. We investigate the cell cycle and identify the nutrition supply as the energy input that sustains the stability, speed, and coherence of cell cycle oscillation, from which the different vital phases of the cell cycle emerge. We examine neural decision-making processes and find the trade-offs among speed, accuracy, and thermodynamic costs that are important for neural function. Lastly, we consider the thermodynamic cost for specificity in cellular signaling and adaptation.
Collapse
Affiliation(s)
- Xiaona Fang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Wang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
12
|
Zhang K, Wang J. Exploring the underlying mechanisms of the coupling between cell differentiation and cell cycle. J Phys Chem B 2019; 123:3490-3498. [PMID: 30933510 DOI: 10.1021/acs.jpcb.9b00509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differentiation and replication are the two major fates of the cells. They are the fundamental processes for completing the cellular functions. Although the underlying biological processes have been considerably explored for each of these processes and significant progresses have been made, global quantification and physical understanding are still challenging, especially for the relationship among them. In this study, we developed a theoretical framework for both the cell cycle and cell differentiation by exploring the associated global dynamics and their underlying relationship. We found that the dynamics of the cell cycle and cell differentiation is governed by both the landscape gradient and rotational curl flux. While landscape attracts the system down to the stable state basins, the curl flux drives the stable oscillation flow. We uncovered the irregular sombrero-shaped landscapes of the cell cycle at different developmental stages. We studied how the cells develop from undifferentiated cells to differentiated cells and how the cell cycle proceeds at different developmental stages. We investigated how the cell differentiation can influence the cell cycle where more progressive differentiation can lead to the changes of the cell cycle oscillations. In contrast, we can also quantitatively illustrate how the cell cycle can influence the cell differentiation where cell cycle regulation can lead to the changes of the differentiation processes. Through the landscape and flux analysis, we uncovered the key regulatory elements controlling the progression of the cell differentiation and cell cycle. This can help to design an effective strategy for drug discovery against associated diseases.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P.R.China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P.R.China.,Department of Chemistry and of Physics and Astronomy , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
13
|
Zhang K, Wang J. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle. J Phys Chem B 2018; 122:5487-5499. [PMID: 29310435 DOI: 10.1021/acs.jpcb.7b11840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for controlling the cell cycle speed. This can help to design an effective strategy for drug discovery against cancer.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , P.R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , P.R. China.,Department of Chemistry and Physics, Department of Applied Mathematics , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
14
|
Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production. ENTROPY 2017. [DOI: 10.3390/e19120678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle. PLoS Comput Biol 2017; 13:e1005710. [PMID: 28892489 PMCID: PMC5608438 DOI: 10.1371/journal.pcbi.1005710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/21/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023] Open
Abstract
Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR) as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer. We have uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. We have found that the funneled potential landscape is crucial for the stability of the states on the cell cycle, however, the stabilities of the oscillation states cannot guarantee the stable directional flows. We have uncovered that the funneled flux landscape is important for the emergence and maintenance of the stable limit cycle oscillation flow. This work will allow us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer.
Collapse
|
16
|
Quantifying the potential and flux landscapes of multi-locus evolution. J Theor Biol 2017; 422:31-49. [DOI: 10.1016/j.jtbi.2017.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 11/22/2022]
|
17
|
A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality. ENTROPY 2016. [DOI: 10.3390/e18080309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Delineating the respective impacts of stochastic curl- and grad-forces in a family of idealized core genetic commitment circuits. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Kürsten R, Behn U. Patchwork sampling of stochastic differential equations. Phys Rev E 2016; 93:033307. [PMID: 27078484 DOI: 10.1103/physreve.93.033307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/07/2022]
Abstract
We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains.
Collapse
Affiliation(s)
- Rüdiger Kürsten
- Institut für Theoretische Physik, Universität Leipzig, POB 100 920, D-04009 Leipzig, Germany and International Max Planck Research School Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
| | - Ulrich Behn
- Institut für Theoretische Physik, Universität Leipzig, POB 100 920, D-04009 Leipzig, Germany and International Max Planck Research School Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
| |
Collapse
|
21
|
Zhou P, Li T. Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond. J Chem Phys 2016; 144:094109. [DOI: 10.1063/1.4943096] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peijie Zhou
- LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Tiejun Li
- LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Borlenghi S. Gauge invariance and geometric phase in nonequilibrium thermodynamics. Phys Rev E 2016; 93:012133. [PMID: 26871050 DOI: 10.1103/physreve.93.012133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/07/2022]
Abstract
We show the link between U(1) lattice gauge theories and the off-equilibrium thermodynamics of a large class of nonlinear oscillators networks. The coupling between the oscillators plays the role of a gauge field, or connection, on the network. The thermodynamical forces that drive energy flows are expressed in terms of the curvature of the connection, analogous to a geometric phase. The model, which holds both close and far from equilibrium, predicts the existence of persistent energy and particle currents circulating in closed loops through the network. The predictions are confirmed by numerical simulations. Possible extension of the theory and experimental applications to nanoscale devices are briefly discussed.
Collapse
Affiliation(s)
- Simone Borlenghi
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| |
Collapse
|
23
|
Zhang W, Hartmann C, Schütte C. Effective dynamics along given reaction coordinates, and reaction rate theory. Faraday Discuss 2016; 195:365-394. [DOI: 10.1039/c6fd00147e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: we first show that if we start with an ergodic diffusion process whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Mori–Zwanzig, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the “equation-free” approach and the “heterogeneous multiscale method” can be seen as special cases of our approach.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Mathematics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Carsten Hartmann
- Institute of Mathematics
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Institute of Mathematics
| | - Christof Schütte
- Institute of Mathematics
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Zuse Institute Berlin
| |
Collapse
|
24
|
Wu W, Wang J. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems. J Chem Phys 2014; 141:105104. [DOI: 10.1063/1.4894389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Wei Wu
- Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Jin Wang
- Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun, China
| |
Collapse
|
25
|
Fatriansyah JF, Sasaki Y, Orihara H. Nonequilibrium steady-state response of a nematic liquid crystal under simple shear flow and electric fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032504. [PMID: 25314462 DOI: 10.1103/physreve.90.032504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 06/04/2023]
Abstract
The effect of a dc electric field on the response of a nematic liquid crystal under shear flow has been investigated by measuring the shear stress response to an ac electric field used as a probe. It was found that both the first- and second-order responses do not vanish at high frequencies, but have constant nonzero values. The experimental results are in good agreement with calculations based on the Ericksen-Leslie theory. The role of the Parodi relation (which is derived from the Onsager reciprocal relation) in the stress response is discussed.
Collapse
Affiliation(s)
- Jaka Fajar Fatriansyah
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuji Sasaki
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroshi Orihara
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
26
|
Zhang ZD, Wang J. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics. J Chem Phys 2014; 140:245101. [DOI: 10.1063/1.4884125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Z. D. Zhang
- Department of Physics and Astronomy, SUNY Stony Brook, New York 11794, USA
| | - J. Wang
- Department of Physics and Astronomy, SUNY Stony Brook, New York 11794, USA
- Department of Chemistry, SUNY Stony Brook, New York 11794, USA
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
27
|
Wu W, Wang J. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems. J Chem Phys 2013; 139:121920. [DOI: 10.1063/1.4816376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Eddy current and coupled landscapes for nonadiabatic and nonequilibrium complex system dynamics. Proc Natl Acad Sci U S A 2013; 110:14930-5. [PMID: 23980160 DOI: 10.1073/pnas.1305604110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physical and biological systems are often involved with coupled processes of different time scales. In the system with electronic and atomic motions, for example, the interplay between the atomic motion along the same energy landscape and the electronic hopping between different landscapes is critical: the system behavior largely depends on whether the intralandscape motion is slower (adiabatic) or faster (nonadiabatic) than the interlandscape hopping. For general nonequilibrium dynamics where Hamiltonian or energy function is unknown a priori, the challenge is how to extend the concepts of the intra- and interlandscape dynamics. In this paper we establish a theoretical framework for describing global nonequilibrium and nonadiabatic complex system dynamics by transforming the coupled landscapes into a single landscape but with additional dimensions. On this single landscape, dynamics is driven by gradient of the potential landscape, which is closely related to the steady-state probability distribution of the enlarged dimensions, and the probability flux, which has a curl nature. Through an example of a self-regulating gene circuit, we show that the curl flux has dramatic effects on gene regulatory dynamics. The curl flux and landscape framework developed here are easy to visualize and can be used to guide further investigation of physical and biological nonequilibrium systems.
Collapse
|
29
|
Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:126001. [PMID: 23168354 DOI: 10.1088/0034-4885/75/12/126001] [Citation(s) in RCA: 1213] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Collapse
Affiliation(s)
- Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
30
|
Orihara H, Yang F, Takigami Y, Takikawa Y, Na YH. Influence of shear flow on the linear response of a nematic liquid crystal to external electric fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041701. [PMID: 23214597 DOI: 10.1103/physreve.86.041701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Indexed: 06/01/2023]
Abstract
We have investigated the linear response of shear stress to ac electric fields under shear flow in a nematic liquid crystal. The experimental results were compared with the theoretical results derived from the Ericksen-Leslie theory. Although close agreement was obtained at low shear rates, discrepancies were observed at high shear rates. By introducing a two-mode coupling model the experimental results were well reproduced for the entire range of shear rates, and nonconservative forces were found to play an important role in determining the fluctuation dynamics, which is a characteristic of nonequilibrium steady states.
Collapse
Affiliation(s)
- Hiroshi Orihara
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
| | | | | | | | | |
Collapse
|
31
|
Xu L, Shi H, Feng H, Wang J. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. J Chem Phys 2012; 136:165102. [PMID: 22559506 DOI: 10.1063/1.3703514] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The global stability of dynamical systems and networks is still challenging to study. We developed a landscape and flux framework to explore the global stability. The potential landscape is directly linked to the steady state probability distribution of the non-equilibrium dynamical systems which can be used to study the global stability. The steady state probability flux together with the landscape gradient determines the dynamics of the system. The non-zero probability flux implies the breaking down of the detailed balance which is a quantitative signature of the systems being in non-equilibrium states. We investigated the dynamics of several systems from monostability to limit cycle and explored the microscopic origin of the probability flux. We discovered that the origin of the probability flux is due to the non-equilibrium conditions on the concentrations resulting energy input acting like non-equilibrium pump or battery to the system. Another interesting behavior we uncovered is that the probabilistic flux is closely related to the steady state deterministic chemical flux. For the monostable model of the kinetic cycle, the analytical expression of the probabilistic flux is directly related to the deterministic flux, and the later is directly generated by the chemical potential difference from the adenosine triphosphate (ATP) hydrolysis. For the limit cycle of the reversible Schnakenberg model, we also show that the probabilistic flux is correlated to the chemical driving force, as well as the deterministic effective flux. Furthermore, we study the phase coherence of the stochastic oscillation against the energy pump, and argue that larger non-equilibrium pump results faster flux and higher coherence. This leads to higher robustness of the biological oscillations. We also uncovered how fluctuations influence the coherence of the oscillations in two steps: (1) The mild fluctuations influence the coherence of the system mainly through the probability flux while maintaining the regular landscape topography. (2) The larger fluctuations lead to flat landscape and the complete loss of the stability of the whole system.
Collapse
Affiliation(s)
- Liufang Xu
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | |
Collapse
|