1
|
Sabbatini G, Mari E, Ortore MG, Di Gregorio A, Fattorini D, Di Carlo M, Galeazzi R, Vignaroli C, Simoni S, Giorgini G, Guarrasi V, Chiancone B, Leto L, Cirlini M, Del Vecchio L, Mangione MR, Vilasi S, Minnelli C, Mobbili G. Hop leaves: From waste to a valuable source of bioactive compounds - A multidisciplinary approach to investigating potential applications. Heliyon 2024; 10:e37593. [PMID: 39328568 PMCID: PMC11425108 DOI: 10.1016/j.heliyon.2024.e37593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
After harvesting of cones used for beer production, the remaining hop vegetative biomass requires disposal. The hop plant contains bioactive compounds in all its parts-cones, leaves, and roots-exhibiting interesting antioxidant, antiviral, and antibacterial properties. In this work, extracts obtained from hop leaves, a plant material often neglected in the hop cultivation, have been investigated; the qualitative UHPLC-MS/MS and GC-TOF-MS characterization revealed the presence of bioactive compounds such as polyphenols, α- and β-acids and terpenes are present. The extract retained antioxidant activity, as verified by Folin-Ciocalteu, DPPH, ABTS and FRAP assays, and demonstrated some antimicrobial activity when combined with antibiotics, particularly against Gram-positive bacterial strains. Additionally, the extracts showed an ability to interact with proteins as human insulin, amyloid beta peptide, mucin and bovine serum albumin (BSA), has been detected, indicating their potential to counteract inflammatory processes and protect against Alzheimer's disease. These findings suggest that hop vegetative biomass, typically considered waste, can be potentially transformed into a valuable resource with applications in various fields, from nutraceuticals to pharmaceuticals and cosmetics, aligning with a circular economy perspective.
Collapse
Affiliation(s)
- Giulia Sabbatini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Eleonora Mari
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Alessandra Di Gregorio
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Daniele Fattorini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
- Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Marta Di Carlo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valeria Guarrasi
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
| | - Benedetta Chiancone
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | - Silvia Vilasi
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| |
Collapse
|
2
|
Delort A, Cottone G, Malliavin TE, Müller MM. Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle. Int J Mol Sci 2024; 25:2481. [PMID: 38473729 DOI: 10.3390/ijms25052481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs suggests that the interaction with the membrane is driven by the transition of an α helical switch towards a β hairpin. Atomistic simulations in conjunction with the mesoscopic Twister model are used to investigate the consequences of this proposition for the toxin-membrane interaction. The conformational mobilities of the domain, as well as the effect of the membrane, implicitly examined by comparing water and water-ethanol solvents, lead to the conclusion that the transition of the switch modifies the internal dynamics and the effect of membrane hydrophobicity on the whole protein. The central two α helices, helix 1 and helix 2, forming two coiled-coil motifs, are analyzed using the Twister model, in which the initial deformation of the membrane by the protein is caused by the presence of local torques arising from asymmetric positions of hydrophobic residues. Different torque distributions are observed depending on the switch conformations and permit an origin for the mechanism opening the membrane to be proposed.
Collapse
Affiliation(s)
| | - Grazia Cottone
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, 90128 Palermo, Italy
| | | | | |
Collapse
|
3
|
Besford QA, Van den Heuvel W, Christofferson AJ. Dipolar Dispersion Forces in Water-Methanol Mixtures: Enhancement of Water Interactions upon Dilution Drives Self-Association. J Phys Chem B 2022; 126:6231-6239. [PMID: 35976055 DOI: 10.1021/acs.jpcb.2c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mixtures of short-chain alcohols and water produce anomalous thermodynamic and structural quantities, including molecular segregation into water-rich and alcohol-rich components. Herein, we used molecular dynamics simulations with polarizable models to investigate interactions that could drive the self-association of water molecules in mixtures with methanol (MeOH). As water was diluted with MeOH, significant changes in the distribution of molecules and solvation properties occurred, where water exhibited a clear preference for self-association. When common structural quantities were analyzed, it was found that there was a clear reduction in water-water hydrogen bonding and tetrahedral order (both in terms of typical bulk behavior), contrary to the observed water self-association. However, when dipolar dispersion forces between all molecules as a function of system composition were analyzed, it was found that water-water dipolar interactions became significantly stronger with dilution (6-fold stronger interaction in 75% MeOH compared to 0% MeOH). This was only observed for water, where MeOH-MeOH interactions became weaker as the systems were more dilute in MeOH. These forces result from specific dipole orientations, likely occurring to adopt lower energy configurations (i.e., head-to-tail or antiparallel). For water, this may result from lost other interactions (e.g., hydrogen bonding), leading to more rotational freedom between the dipole moments. These intriguing changes in dipolar interactions, which directly result from structural changes, can therefore explain, in part, the driving force for water self-association in MeOH-water mixtures.
Collapse
Affiliation(s)
- Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Willem Van den Heuvel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
4
|
Christoforou E, Leontiadou H, Noé F, Samios J, Emiris IZ, Cournia Z. Investigating the Bioactive Conformation of Angiotensin II Using Markov State Modeling Revisited with Web-Scale Clustering. J Chem Theory Comput 2022; 18:5636-5648. [PMID: 35944098 DOI: 10.1021/acs.jctc.1c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulation is a powerful technique for studying the structure and dynamics of biomolecules in atomic-level detail by sampling their various conformations in real time. Because of the long timescales that need to be sampled to study biomolecular processes and the big and complex nature of the corresponding data, relevant analyses of important biophysical phenomena are challenging. Clustering and Markov state models (MSMs) are efficient computational techniques that can be used to extract dominant conformational states and to connect those with kinetic information. In this work, we perform Molecular Dynamics simulations to investigate the free energy landscape of Angiotensin II (AngII) in order to unravel its bioactive conformations using different clustering techniques and Markov state modeling. AngII is an octapeptide hormone, which binds to the AT1 transmembrane receptor, and plays a vital role in the regulation of blood pressure, conservation of total blood volume, and salt homeostasis. To mimic the water-membrane interface as AngII approaches the AT1 receptor and to compare our findings with available experimental results, the simulations were performed in water as well as in water-ethanol mixtures. Our results show that in the water-ethanol environment, AngII adopts more compact U-shaped (folded) conformations than in water, which resembles its structure when bound to the AT1 receptor. For clustering of the conformations, we validate the efficiency of an inverted-quantized k-means algorithm, as a fast approximate clustering technique for web-scale data (millions of points into thousands or millions of clusters) compared to k-means, on data from trajectories of molecular dynamics simulations with reasonable trade-offs between time and accuracy. Finally, we extract MSMs using various clustering techniques for the generation of microstates and macrostates and for the selection of the macrostate representatives.
Collapse
Affiliation(s)
- Emmanouil Christoforou
- ITMB, Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Athens 15772, Greece.,Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, Athens 11527, Greece
| | - Hari Leontiadou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, Athens 11527, Greece
| | - Frank Noé
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany
| | - Jannis Samios
- Department of Chemistry, Laboratory of Physical Chemistry, National & Kapodistrian University of Athens, Athens 15772, Greece
| | - Ioannis Z Emiris
- ITMB, Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Athens 15772, Greece.,Athena Research Center, Marousi 15125, Greece
| | - Zoe Cournia
- ITMB, Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Athens 15772, Greece.,Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, Athens 11527, Greece
| |
Collapse
|
5
|
Taurine Stabilizing Effect on Lysozyme. Life (Basel) 2022; 12:life12010133. [PMID: 35054526 PMCID: PMC8779517 DOI: 10.3390/life12010133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
Taurine is an important organic osmolyte in mammalian cells, and it weakens inflammation and oxidative stress mediated injuries in some diseases. Recently, taurine has been demonstrated to play a therapeutic role against neurodegenerative disorders, although its parallel involvement in several biochemical mechanisms makes not clear taurine specific role in these diseases. Furthermore, the stabilizing effect of this molecule in terms of protein stability is known, but not deeply investigated. In this work we explore by Circular Dichroism the stabilizing impact of taurine in lysozyme thermal denaturation and its influence in lysozyme aggregation into amyloid fibrils. Taurine even at low concentration modifies protein-protein interactions in lysozyme native state, as revealed by Small Angle X-ray Scattering experiments, and alters the amyloid aggregation pattern without completely inhibiting it, as confirmed by UV/Vis spectroscopy with Congo Red and by Atomic Force Microscopy. Evaluation of the cytotoxicities of the amyloid fibrils grown in presence or in absence of taurine is investigated on SH-SY5Y neuroblastoma cells.
Collapse
|
6
|
SAXS Reveals the Stabilization Effects of Modified Sugars on Model Proteins. Life (Basel) 2022; 12:life12010123. [PMID: 35054516 PMCID: PMC8778440 DOI: 10.3390/life12010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because they need to be maintained in a cold regime, which is costly and very challenging to achieve in remote areas of the world. For this reason, it is extremely important to find stabilizing agents that are able to preserve and protect proteins against denaturation. In the present work, we investigate, by extensively using synchrotron small-angle X-ray scattering experiments, the stabilization effect of five different sugar-derived compounds developed at ExtremoChem on two model proteins: myoglobin and insulin. The data analysis, based on a novel method that combines structural and thermodynamic features, has provided details about the physical-chemical processes that regulate the stability of these proteins in the presence of stabilizing compounds. The results clearly show that some modified sugars exert a greater stabilizing effect than others, being able to maintain the active forms of proteins at temperatures higher than those in which proteins, in the absence of stabilizers, reach denatured states.
Collapse
|
7
|
Hansen J, Uthayakumar R, Pedersen JS, Egelhaaf SU, Platten F. Interactions in protein solutions close to liquid-liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties. Phys Chem Chem Phys 2021; 23:22384-22394. [PMID: 34608908 DOI: 10.1039/d1cp03210k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid-liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Rajeevann Uthayakumar
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Jan Skov Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany. .,Institute of Biological Information Processing (IBI-4: Biomacromolecular Systems and Processes), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
8
|
Evaluation of biological activities, structural and conformational properties of bovine beta- and alpha-trypsin isoforms in aqueous-organic media. Int J Biol Macromol 2021; 176:291-303. [PMID: 33592263 DOI: 10.1016/j.ijbiomac.2021.02.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
The study of the biological activity of trypsin isoforms in aqueous-organic media is of great interest to various fields of knowledge and biochemistry applications. Thus enzymatic, structural, and energetic properties of bovine β- and α-trypsin isoforms were compared in aqueous-organic media using 30 mg of each isoform. The results showed that the changes induced on the structure and activity of the same trypsin isoform occur at different concentrations. Better results for activity (ionic strength of 0.11 mol·L-1, at 37 °C and pH 8.0) were found in 0-40% of ethanolic media in which the activity for β-trypsin was about 60% higher than ɑ-trypsin. The ethanolic system does not cause significant changes in the level of secondary structure but the β-trypsin isoform undergoes a major rearrangement. The use of until 60% (v/v) ethanol showed that β-trypsin presents a denaturation process 17% more cooperative. The organic solvent causes redistribution in the supramolecular arrangement of both isoforms: all concentrations used induced the β-trypsin molecules to rearrange into agglomerates. The ɑ-trypsin rearranges into agglomerates up to 60% (v/v) of ethanol and aggregates at 80% (v/v) of ethanol. Both isoforms keep the enzymatic activity up to 60% (v/v) of ethanol.
Collapse
|
9
|
Costanzo S, Banc A, Louhichi A, Chauveau E, Wu B, Morel MH, Ramos L. Tailoring the Viscoelasticity of Polymer Gels of Gluten Proteins through Solvent Quality. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Salvatore Costanzo
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Amélie Banc
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Ameur Louhichi
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Edouard Chauveau
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Baohu Wu
- Forschungszentrum Jülich GmbH JCNS am MLZ,Lichtenbergstr. 1, Garching 85748, Germany
| | - Marie-Hélène Morel
- Ingénierie des Agro-Polymères et Technologies Emergentes (IATE), Univ. Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
10
|
Spinozzi F, Ortore MG, Nava G, Bomboi F, Carducci F, Amenitsch H, Bellini T, Sciortino F, Mariani P. Gelling without Structuring: A SAXS Study of the Interactions among DNA Nanostars. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10387-10396. [PMID: 32787014 PMCID: PMC8010795 DOI: 10.1021/acs.langmuir.0c01520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
We evaluate, by means of synchrotron small-angle X-ray scattering, the shape and mutual interactions of DNA tetravalent nanostars as a function of temperature in both the gas-like state and across the gel transition. To this end, we calculate the form factor from coarse-grained molecular dynamics simulations with a novel method that includes hydration effects; we approximate the radial interaction of DNA nanostars as a hard-sphere potential complemented by a repulsive and an attractive Yukawa term; and we predict the structure factors by exploiting the perturbative random phase approximation of the Percus-Yevick equation. Our approach enables us to fit all the data by selecting the particle radius and the width and amplitude of the attractive potential as free parameters. We determine the evolution of the structure factor across gelation and detect subtle changes of the effective interparticle interactions, that we associate to the temperature and concentration dependence of the particle size. Despite the approximations, the approach here adopted offers new detailed insights into the structure and interparticle interactions of this fascinating system.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Maria Grazia Ortore
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Giovanni Nava
- Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Francesca Bomboi
- Department
of Physics, Sapienza, Università
di Roma, 00185 Rome, Italy
| | - Federica Carducci
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Heinz Amenitsch
- Institute
for Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Tommaso Bellini
- Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Paolo Mariani
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| |
Collapse
|
11
|
Disentangling the role of solvent polarity and protein solvation in folding and self-assembly of α-lactalbumin. J Colloid Interface Sci 2020; 561:749-761. [DOI: 10.1016/j.jcis.2019.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
|
12
|
Gonnelli A, Pieraccini S, Baldassarri EJ, Funari S, Masiero S, Ortore MG, Mariani P. Metallo-responsive self-assembly of lipophilic guanines in hydrocarbon solvents: a systematic SAXS structural characterization. NANOSCALE 2020; 12:1022-1031. [PMID: 31845695 DOI: 10.1039/c9nr08556d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipophilic guanines (LipoGs) in aprotic solvents undergo different self-assembly processes based on different H-bonded motifs. Cylindrical nanotubes made by π-π stacked guanine tetramers (G-quadruplexes) and flat, tape-like aggregates (G-ribbons) have been observed depending on the presence of alkali metal ions. To obtain information on the structural properties and stability of these LipoG aggregates, Small-Angle X-ray Scattering (SAXS) experiments have been performed in dodecane, both in the presence and in the absence of potassium ions. As a result, the occurrence of the two different metallo-responsive architectures (nanoribbons or columnar nanotubes) was confirmed and we reported here for the first time a systematic study on the dependence of the aggregate properties on composition, temperature and molecular unit structure. Even if dodecane was selected to favour LipoG solubility, a strong tendency to self-organize into ordered lyotropic phases was indeed detected.
Collapse
Affiliation(s)
- Adriano Gonnelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Biophysics Research Group, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
The Effect of Dimethyl Sulfoxide on the Lysozyme Unfolding Kinetics, Thermodynamics, and Mechanism. Biomolecules 2019; 9:biom9100547. [PMID: 31569484 PMCID: PMC6843525 DOI: 10.3390/biom9100547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
The thermal stability of proteins in the presence of organic solvents and the search for ways to increase this stability are important topics in industrial biocatalysis and protein engineering. The denaturation of hen egg-white lysozyme in mixtures of water with dimethyl sulfoxide (DMSO) with a broad range of compositions was studied using a combination of differential scanning calorimetry (DSC), circular dichroism (CD), and spectrofluorimetry techniques. In this study, for the first time, the kinetics of unfolding of lysozyme in DMSO–water mixtures was characterized. In the presence of DMSO, a sharp decrease in near-UV CD and an increase in the fluorescence signal were observed at lower temperatures than the DSC denaturation peak. It was found that differences in the temperatures of the CD and DSC signal changes increase as the content of DMSO increases. Changes in CD and fluorescence are triggered by a break of the tertiary contacts, leading to an intermediate state, while the DSC peak corresponds to a subsequent complete loss of the native structure. In this way, the commonly used two-state model was proven to be unsuitable to describe the unfolding of lysozyme in the presence of DMSO. In kinetic studies, it was found that even high concentrations of DMSO do not drastically change the activation energy of the initial stage of unfolding associated with a disruption of the tertiary structure, while the enthalpy of denaturation shows a significant dependence on DMSO content. This observation suggests that the structure of the transition state upon unfolding remains similar to the structure of the native state.
Collapse
|
14
|
Mohan V, Das N, Das A, Mishra V, Sen P. Spectroscopic Insight on Ethanol-Induced Aggregation of Papain. J Phys Chem B 2019; 123:2280-2290. [PMID: 30775921 DOI: 10.1021/acs.jpcb.8b12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this contribution, the structural and dynamic changes occurring to papain in ethanol-water binary solvent mixtures have been investigated and compared with its denatured state. Steady-state fluorescence, solvation dynamics, time-resolved rotational anisotropy, circular dichroism (CD), and single molecular-level fluorescence correlation spectroscopic (FCS) studies were performed for this purpose. In ethanol-water mixtures with XEtOH = 0.6, N-(7-dimethylamino-4-methylcoumarin-3-yl)iodoacetamide (DACIA)-tagged papain was found to undergo a blue shift of 12 nm, while in the presence of 5 M GnHCl, a red shift of 5 nm was observed. Solvation dynamics of the system was also found to be different in the presence of these external agents. In ethanol-water mixtures, the average solvation time was found to increase almost 2-fold as compared to that in water, while in the presence of GnHCl, only a marginal increase could be observed. These changes of DACIA-tagged papain in ethanol-water mixtures are attributed to the aggregation of the protein in the presence of ethanol. The residual anisotropy was found to increase 14-fold, and the rotational time component corresponding to the rotation of the probe molecule was found to increase by 4-fold in the ethanol-water mixture which also gives a notion of the papain aggregation. Atomic force microscopy (AFM) confirms this aggregate formation, which is also quantified by the FCS study. The hydrodynamic radius of the protein aggregates in ethanol-water mixtures was calculated to be ∼155 Å as compared to the corresponding value of 18.4 Å in the case of native monomer papain. Also, it confirmed that the aggregate formation takes place even in the nanomolar concentration of papain. Analysis of circular dichroism spectra of papain showed that an increase in the β-sheet content of papain at the expense of α-helix and the random coil with an increase of the ethanol mole fraction may be responsible for this aggregation process.
Collapse
Affiliation(s)
- Vaisakh Mohan
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208 016 , Uttar Pradesh , India
| | - Nilimesh Das
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208 016 , Uttar Pradesh , India
| | - Aritra Das
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208 016 , Uttar Pradesh , India
| | - Vipin Mishra
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208 016 , Uttar Pradesh , India
| | - Pratik Sen
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208 016 , Uttar Pradesh , India
| |
Collapse
|
15
|
Mohanta D, Jana M. Effects of ethanol on the secondary structure specific hydration properties of Chymotrypsin Inhibitor 2 in its folded and unfolded forms. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1496246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dayanidhi Mohanta
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela, India
| |
Collapse
|
16
|
Sarkar S, Biswas B, Singh PC. Spectroscopic and Molecular Dynamics Simulation Study of Lysozyme in the Aqueous Mixture of Ethanol: Insights into the Nonmonotonic Change of the Structure of Lysozyme. J Phys Chem B 2018; 122:7811-7820. [DOI: 10.1021/acs.jpcb.8b03106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sunipa Sarkar
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Biswas
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prashant Chandra Singh
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
17
|
Halder R, Jana B. Unravelling the Composition-Dependent Anomalies of Pair Hydrophobicity in Water–Ethanol Binary Mixtures. J Phys Chem B 2018; 122:6801-6809. [DOI: 10.1021/acs.jpcb.8b02528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ritaban Halder
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Nandi S, Parui S, Halder R, Jana B, Bhattacharyya K. Interaction of proteins with ionic liquid, alcohol and DMSO and in situ generation of gold nano-clusters in a cell. Biophys Rev 2018; 10:757-768. [PMID: 29147940 PMCID: PMC5988615 DOI: 10.1007/s12551-017-0331-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 12/27/2022] Open
Abstract
In this review, we give a brief overview on how the interaction of proteins with ionic liquids, alcohols and dimethyl sulfoxide (DMSO) influences the stability, conformational dynamics and function of proteins/enzymes. We present experimental results obtained from fluorescence correlation spectroscopy on the effect of ionic liquid or alcohol or DMSO on the size (more precisely, the diffusion constant) and conformational dynamics of lysozyme, cytochrome c and human serum albumin in aqueous solution. The interaction of ionic liquid with biomolecules (e.g. protein, DNA etc.) has emerged as a current frontier. We demonstrate that ionic liquids are excellent stabilizers of protein and DNA and, in some cases, cause refolding of a protein already denatured by chemical denaturing agents. We show that in ethanol-water binary mixture, proteins undergo non-monotonic changes in size and dynamics with increasing ethanol content. We also discuss the effect of water-DMSO mixture on the stability of proteins. We demonstrate how large-scale molecular dynamics simulations have revealed the molecular origin of this observed phenomenon and provide a microscopic picture of the immediate environment of the biomolecules. Finally, we describe how favorable interactions of ionic liquids may be utilized for in situ generation of fluorescent gold nano-clusters for imaging a live cell.
Collapse
Affiliation(s)
- Somen Nandi
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Sridip Parui
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Ritaban Halder
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India.
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India.
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462 066, India.
| |
Collapse
|
19
|
Mohanta D, Santra S, Jana M. Conformational disorder and solvation properties of the key-residues of a protein in water-ethanol mixed solutions. Phys Chem Chem Phys 2018; 19:32636-32646. [PMID: 29192709 DOI: 10.1039/c7cp06022j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small number of key-residues in a protein sequence play vital roles in the function, stability, and folding of the protein. The nonuniform conformational disorder of a small protein Chymotrypsin Inhibitor 2 (CI2) and its secondary segments has been quantified in the ethanol governed temperature induced unfolding process by estimating its change in configurational entropy in several water-ethanol mixed solutions. Such calculations further assist us in identifying the key-residues, from where the unfolding of the protein was initiated. Our findings match well with the reported experimental results. We then make an attempt to explore the properties of the solvent water and ethanol around the key-residues of the protein in its folded and unfolded forms at ambient temperature to identify the individual role of ethanol and water in the protein unfolding. We find that the key-residues of the unfolded protein are in good contact with both water and ethanol as compared to those of the folded protein. In the presence of ethanol, water molecules are noticed to form a rigid structurally bound solvation layer around the key-residues of the protein, irrespective of its conformational state. The restricted translational motion and prominent caging effect of the water and ethanol molecules present around the key-residues of the unfolded protein are a signature of the existence of a rigid mixed water-ethanol layer as compared to that around the folded protein. Furthermore, comparable restricted structural relaxation of the key-residue-water and key-residue-ethanol hydrogen bonds in the unfolded protein as compared to that in the folded one implies that the formation of a strong long-lived hydrogen bonding environment nourishes the unfolding process. We believe that our findings will shed light to several co-solvent governed unfolding processes of a protein in general.
Collapse
Affiliation(s)
- Dayanidhi Mohanta
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela - 769008, India.
| | | | | |
Collapse
|
20
|
Sedov IA, Magsumov TI. Molecular dynamics study of unfolding of lysozyme in water and its mixtures with dimethyl sulfoxide. J Mol Graph Model 2017; 76:466-474. [PMID: 28797927 DOI: 10.1016/j.jmgm.2017.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022]
Abstract
All-atom explicit solvent molecular dynamics was used to study the process of unfolding of hen egg white lysozyme in water and mixtures of water with dimethyl sulfoxide at different compositions. We have determined the kinetic parameters of unfolding at a constant temperature 450K. For each run, the time of disruption of the tertiary structure of lysozyme tu was defined as the moment when a certain structural criterion computed from the trajectory reaches its critical value. A good agreement is observed between the results obtained using several different criteria. The secondary structure according to DSSP calculations is found to be partially unfolded to the moment of disruption of tertiary structure, but some of its elements keep for a long time after that. The values of tu averaged over ten 30ns-long trajectories for each solvent composition are shown to decrease very rapidly with addition of dimethyl sulfoxide, and rather small amounts of dimethyl sulfoxide are found to change the pathway of unfolding. In pure water, despite the loss of tertiary contacts and disruption of secondary structure elements, the protein preserves its compact globular state at least over 130ns of simulation, while even at 5mol percents of dimethyl sulfoxide it loses its compactness within 30ns. The proposed methodology is a generally applicable tool to quantify the rate of protein unfolding in simulation studies.
Collapse
Affiliation(s)
- Igor A Sedov
- Chemical Institute, Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia.
| | - Timur I Magsumov
- Chemical Institute, Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia
| |
Collapse
|
21
|
Mohanta D, Santra S, Reddy GN, Giri S, Jana M. Residue Specific Interaction of an Unfolded Protein with Solvents in Mixed Water–Ethanol Solutions: A Combined Molecular Dynamics and ONIOM Study. J Phys Chem A 2017; 121:6172-6186. [DOI: 10.1021/acs.jpca.7b05955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dayanidhi Mohanta
- Molecular
Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Santanu Santra
- Molecular
Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - G. Naaresh Reddy
- Theoretical
Chemistry Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Santanab Giri
- Theoretical
Chemistry Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular
Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
22
|
Murakami S, Hayashi T, Kinoshita M. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein. J Chem Phys 2017; 146:055102. [DOI: 10.1063/1.4975165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Secondary structure and colloidal stability of beta-casein in microheterogeneous water-ethanol solutions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Spinozzi F, Mariani P, Ortore MG. Proteins in binary solvents. Biophys Rev 2016; 8:87-106. [PMID: 28510051 PMCID: PMC5425779 DOI: 10.1007/s12551-016-0193-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 01/09/2023] Open
Abstract
Proteins in living organisms exist in complex aqueous solutions or embedded in membranes. In solution, proteins are surrounded by a tightly bound hydration layer, which is more ordered and less mobile than bulk water. As a consequence, water plays a major role in controlling protein structure stability, conformational flexibility, dynamics, and functionality, but it also appears that protein surface regulates the structuring of the surrounding water. The presence of cosolvents can modify the hydration layer characteristics and then the whole protein structural and dynamical properties. Because cytoplasm or biological liquids are complex solutions, the knowledge of the solvation shell characteristics in mixed solvents should be considered as a crucial step in describing biological processes at molecular level. This review reports on recent studies on the structural and thermodynamic properties of model proteins dissolved in binary solvent mixtures by small-angle neutron scattering (SANS) and differential scanning microcalorimetry (DSC) techniques. We will show that contrast variation SANS experiments allow to acquire a direct knowledge of both protein structure and protein solvation shell (in terms of low-resolution shape and solvent/cosolvent composition), while DSC experiments provide information on all the relevant thermodynamic properties. We will focus on two main points. First, an extended description of the thermodynamic model used to define the equilibria between water and cosolvent molecules in the protein solvation shell will be presented. Second, the determination of the peculiar characteristics of the protein solvation layer, which will be illustrated by considering different systems. As a conclusion, we will show that the investigation of structure and thermodynamics of proteins in binary aqueous mixtures is an important way to understand the role of hydration in protein stability and activity.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
25
|
Mohanta D, Jana M. Effect of ethanol concentrations on temperature driven structural changes of chymotrypsin inhibitor 2. J Chem Phys 2016; 144:165101. [DOI: 10.1063/1.4947239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dayanidhi Mohanta
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
26
|
Murakami S, Kinoshita M. Effects of monohydric alcohols and polyols on the thermal stability of a protein. J Chem Phys 2016; 144:125105. [PMID: 27036482 DOI: 10.1063/1.4944680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.
Collapse
Affiliation(s)
- Shota Murakami
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
27
|
Ghosh R, Samajdar RN, Bhattacharyya AJ, Bagchi B. Composition dependent multiple structural transformations of myoglobin in aqueous ethanol solution: a combined experimental and theoretical study. J Chem Phys 2015; 143:015103. [PMID: 26156494 DOI: 10.1063/1.4923003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at xEtOH ∼ 0.05 and the other at xEtOH ∼ 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at xEtOH ∼ 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at xEtOH ∼ 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition.
Collapse
Affiliation(s)
- R Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - R N Samajdar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - B Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Spinozzi F, Ferrero C, Ortore MG, De Maria Antolinos A, Mariani P. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macro-molecules in solution. J Appl Crystallogr 2014; 47:1132-1139. [PMID: 24904247 PMCID: PMC4038801 DOI: 10.1107/s1600576714005147] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
Many research topics in the fields of condensed matter and the life sciences are based on small-angle X-ray and neutron scattering techniques. With the current rapid progress in source brilliance and detector technology, high data fluxes of ever-increasing quality are produced. In order to exploit such a huge quantity of data and richness of information, wider and more sophisticated approaches to data analysis are needed. Presented here is GENFIT, a new software tool able to fit small-angle scattering data of randomly oriented macromolecular or nanosized systems according to a wide list of models, including form and structure factors. Batches of curves can be analysed simultaneously in terms of common fitting parameters or by expressing the model parameters via physical or phenomenological link functions. The models can also be combined, enabling the user to describe complex heterogeneous systems.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department DiSVA, Marche Polytechnic University and CNISM, Via Brecce Bianche, I-60131 Ancona, Italy
| | | | - Maria Grazia Ortore
- Department DiSVA, Marche Polytechnic University and CNISM, Via Brecce Bianche, I-60131 Ancona, Italy
| | | | - Paolo Mariani
- Department DiSVA, Marche Polytechnic University and CNISM, Via Brecce Bianche, I-60131 Ancona, Italy
| |
Collapse
|
29
|
Chattoraj S, Mandal AK, Bhattacharyya K. Effect of ethanol-water mixture on the structure and dynamics of lysozyme: A fluorescence correlation spectroscopy study. J Chem Phys 2014; 140:115105. [DOI: 10.1063/1.4868642] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Ghosh R, Roy S, Bagchi B. Solvent Sensitivity of Protein Unfolding: Dynamical Study of Chicken Villin Headpiece Subdomain in Water–Ethanol Binary Mixture. J Phys Chem B 2013; 117:15625-38. [DOI: 10.1021/jp406255z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rikhia Ghosh
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Susmita Roy
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
31
|
Russo D, Ortore MG, Spinozzi F, Mariani P, Loupiac C, Annighofer B, Paciaroni A. The impact of high hydrostatic pressure on structure and dynamics of β-lactoglobulin. Biochim Biophys Acta Gen Subj 2013; 1830:4974-80. [DOI: 10.1016/j.bbagen.2013.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/06/2013] [Accepted: 06/29/2013] [Indexed: 01/12/2023]
|
32
|
Gerig JT. Investigation of Ethanol–Peptide and Water–Peptide Interactions through Intermolecular Nuclear Overhauser Effects and Molecular Dynamics Simulations. J Phys Chem B 2013; 117:4880-92. [DOI: 10.1021/jp4007526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J. T. Gerig
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|