1
|
Han D, Zhao F, Chen Y, Xue Y, Bao K, Chang Y, Lu J, Wang M, Liu T, Gao Q, Cui W, Xu Y. Distinct Characteristic Binding Modes of Benzofuran Core Inhibitors to Diverse Genotypes of Hepatitis C Virus NS5B Polymerase: A Molecular Simulation Study. Int J Mol Sci 2024; 25:8028. [PMID: 39125602 PMCID: PMC11311972 DOI: 10.3390/ijms25158028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The benzofuran core inhibitors HCV-796, BMS-929075, MK-8876, compound 2, and compound 9B exhibit good pan-genotypic activity against various genotypes of NS5B polymerase. To elucidate their mechanism of action, multiple molecular simulation methods were used to investigate the complex systems of these inhibitors binding to GT1a, 1b, 2a, and 2b NS5B polymerases. The calculation results indicated that these five inhibitors can not only interact with the residues in the palm II subdomain of NS5B polymerase, but also with the residues in the palm I subdomain or the palm I/III overlap region. Interestingly, the binding of inhibitors with longer substituents at the C5 position (BMS-929075, MK-8876, compound 2, and compound 9B) to the GT1a and 2b NS5B polymerases exhibits different binding patterns compared to the binding to the GT1b and 2a NS5B polymerases. The interactions between the para-fluorophenyl groups at the C2 positions of the inhibitors and the residues at the binding pockets, together with the interactions between the substituents at the C5 positions and the residues at the reverse β-fold (residues 441-456), play a key role in recognition and the induction of the binding. The relevant studies could provide valuable information for further research and development of novel anti-HCV benzofuran core pan-genotypic inhibitors.
Collapse
Affiliation(s)
- Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Fang Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yifan Chen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yiwei Xue
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Ke Bao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yuxiao Chang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Meiting Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China;
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China;
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (F.Z.); (Y.C.); (Y.X.); (K.B.); (Y.C.); (J.L.); (M.W.); (T.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| |
Collapse
|
2
|
Kelly BD, Smith WR. Alchemical Hydration Free-Energy Calculations Using Molecular Dynamics with Explicit Polarization and Induced Polarity Decoupling: An On–the–Fly Polarization Approach. J Chem Theory Comput 2020; 16:1146-1161. [DOI: 10.1021/acs.jctc.9b01139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Braden D. Kelly
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, Ontario Tech University, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
3
|
Mei Y, Simmonett AC, Pickard FC, DiStasio RA, Brooks BR, Shao Y. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions. J Phys Chem A 2015; 119:5865-82. [PMID: 25945749 DOI: 10.1021/acs.jpca.5b03159] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.
Collapse
Affiliation(s)
- Ye Mei
- †State Key Laboratory of Precision Spectroscopy, Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China.,‡NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China.,⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Andrew C Simmonett
- ⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Frank C Pickard
- ⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Robert A DiStasio
- §Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bernard R Brooks
- ⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Yihan Shao
- ∥Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| |
Collapse
|
4
|
Cerutti DS, Rice JE, Swope WC, Case DA. Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization. J Phys Chem B 2013; 117:2328-38. [PMID: 23379664 PMCID: PMC3622952 DOI: 10.1021/jp311851r] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed the IPolQ method for fitting nonpolarizable point charges to implicitly represent the energy of polarization for systems in pure water. The method involves iterative cycles of molecular dynamics simulations to estimate the water charge density around the solute of interest, followed by quantum mechanical calculations at the MP2/cc-pV(T+d)Z level to determine updated solute charges. Lennard-Jones parameters are updated starting from the Amber FF99SB nonbonded parameter set to accommodate the new charge model, guided by the comparisons to experimental hydration free energies (HFEs) of neutral amino acid side chain analogs and assumptions about the computed HFEs for charged side chains. These Lennard-Jones parameter adjustments for side-chain analogs are assumed to be transferable to amino acids generally, and new charges for all standard amino acids are then derived in the presence of water modeled by TIP4P-Ew. Overall, the new charges depict substantially more polarized amino acids, particularly in the backbone moieties, than previous Amber charge sets. Efforts to complete a new force field with appropriate torsion parameters for this charge model are underway. The IPolQ method is general and applicable to arbitrary solutes.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8066, United States.
| | | | | | | |
Collapse
|