1
|
Mandal S, Kar R, Meyer B, Nair NN. Hybrid Functional and Plane Waves based Ab Initio Molecular Dynamics Study of the Aqueous Fe 2+ /Fe 3+ Redox Reaction. Chemphyschem 2023; 24:e202200617. [PMID: 36169153 DOI: 10.1002/cphc.202200617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Kohn-Sham density functional theory and plane wave basis set based ab initio molecular dynamics (AIMD) simulation is a powerful tool for studying complex reactions in solutions, such as electron transfer (ET) reactions involving Fe2+ /Fe3+ ions in water. In most cases, such simulations are performed using density functionals at the level of Generalized Gradient Approximation (GGA). The challenge in modelling ET reactions is the poor quality of GGA functionals in predicting properties of such open-shell systems due to the inevitable self-interaction error (SIE). While hybrid functionals can minimize SIE, standard plane-wave based AIMD at that level of theory is typically 150 times slower than GGA for systems containing ∼100 atoms. Among several approaches reported to speed-up AIMD simulations with hybrid functionals, the noise-stabilized MD (NSMD) procedure, together with the use of localized orbitals to compute the required exchange integrals, is an attractive option. In this work, we demonstrate the application of the NSMD approach for studying the Fe2+ /Fe3+ redox reaction in water. It is shown here that long AIMD trajectories at the level of hybrid density functionals can be obtained using this approach. Redox properties of the aqueous Fe2+ /Fe3+ system computed from these simulations are compared with the available experimental data for validation.
Collapse
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), 208016, Kanpur, India.,Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, 91052, Erlangen, Germany.,Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 1, 91058, Erlangen, Germany
| | - Ritama Kar
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), 208016, Kanpur, India
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, 91052, Erlangen, Germany.,Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 1, 91058, Erlangen, Germany
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), 208016, Kanpur, India
| |
Collapse
|
2
|
Hpone Myint K, Ding W, Willard AP. The Influence of Spectator Cations on Solvent Reorganization Energy Is a Short-Range Effect. J Phys Chem B 2021; 125:1429-1438. [PMID: 33525875 DOI: 10.1021/acs.jpcb.0c09895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this manuscript, we use classical molecular dynamics simulation to explore the origin of specific cation effects on the rates of bulk-phase aqueous electron transfer (ET) reactions. We consider 0.6 M solutions of Cl- and a series of different cations: Li+, Na+, K+, Rb+, and Cs+. We evaluate the collective electrostatic fluctuations that drive Marcus-like ET and find that they are essentially unaffected by changes in the cationic species. This finding implies that the structure making/breaking properties of various cations do not exert a significant influence on bulk-phase ET reactions. We evaluate the role of ion pairing in these specific cation effects and find, unsurprisingly, that model redox anions that are more highly charged tend to pair more effectively with spectator cations than their monovalent counterparts. We demonstrate that this ion pairing significantly affects local electrostatic fluctuations for the anionic redox species and thus conclude that ion pairing is one of the likely sources of rate-dependent cation effects in aqueous ET reactions.
Collapse
Affiliation(s)
- Kyaw Hpone Myint
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendu Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Oluwaseun O. Mesele
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Piskulich ZA, Mesele OO, Thompson WH. Removing the barrier to the calculation of activation energies: Diffusion coefficients and reorientation times in liquid water. J Chem Phys 2017; 147:134103. [DOI: 10.1063/1.4997723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
5
|
Mavros MG, Hait D, Van Voorhis T. Condensed phase electron transfer beyond the Condon approximation. J Chem Phys 2016; 145:214105. [DOI: 10.1063/1.4971166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael G. Mavros
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Diptarka Hait
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Mesele OO, Thompson WH. Removing the barrier to the calculation of activation energies. J Chem Phys 2016; 145:134107. [DOI: 10.1063/1.4964284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
7
|
Blumberger J. Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chem Rev 2015; 115:11191-238. [DOI: 10.1021/acs.chemrev.5b00298] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jochen Blumberger
- Department of Physics and
Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
8
|
Drechsel-Grau C, Sprik M. The temperature dependence of the symmetry factor for a model Fe3+(aq)/Fe2+(aq) redox half reaction. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1066897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
9
|
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014; 16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car-Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.
| | | | | | | | | |
Collapse
|
10
|
Migliore A, Polizzi NF, Therien M, Beratan DN. Biochemistry and theory of proton-coupled electron transfer. Chem Rev 2014; 114:3381-465. [PMID: 24684625 PMCID: PMC4317057 DOI: 10.1021/cr4006654] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Agostino Migliore
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas F. Polizzi
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Michael
J. Therien
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Khoshtariya DE, Dolidze TD, Shushanyan M, van Eldik R. Long-range electron transfer with myoglobin immobilized at Au/mixed-SAM junctions: mechanistic impact of the strong protein confinement. J Phys Chem B 2014; 118:692-706. [PMID: 24369906 DOI: 10.1021/jp4101569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Horse muscle myoglobin (Mb) was tightly immobilized at Au-deposited ~15-Å-thick mixed-type (1:1) alkanethiol SAMs, HS-(CH₂)₁₁-COOH/HS-(CH₂)₁₁-OH, and placed in contact with buffered H₂O or D₂O solutions. Fast-scan cyclic voltammetry (CV) and a Marcus-equation-based analysis were applied to determine unimolecular standard rate constants and reorganization free energies for electron transfer (ET), under variable-temperature (15-55 °C) and -pressure (0.01-150 MPa) conditions. The CV signal was surprisingly stable and reproducible even after multiple temperature and pressure cycles. The data analysis revealed the following values: standard rate constant, 33 s⁻¹ (25 °C, 0.01 MPa, H₂O); reorganization free energy, 0.5 ± 0.1 eV (throughout); activation enthalpy, 12 ± 3 kJ mol⁻¹; activation volume, -3.1 ± 0.2 cm³ mol⁻¹; and pH-dependent solvent kinetic isotope effect (k(H)⁰/k(D)⁰), 0.7-1.4. Furthermore, the values for the rate constant and reorganization free energy are very similar to those previously found for cytochrome c electrostatically immobilized at the monocomponent Au/HS-(CH₂)₁₁-COOH junction. In vivo, Mb apparently forms a natural electrostatic complex with cytochrome b₅ (cyt-b₅) through the "dynamic" (loose) docking pattern, allowing for a slow ET that is intrinsically coupled to the water's removal from the "defective" heme iron (altogether shaping the biological repair mechanism for Mb's "met" form). In contrary, our experiments rather mimic the case of a "simple" (tight) docking of the redesigned (mutant) Mb with cyt-b₅ (Nocek et al. J. Am. Chem. Soc. 2010, 132, 6165-6175). According to our analysis, in this configuration, Mb's distal pocket (linked to the "ligand channel") seems to be arrested within the restricted configuration, allowing the rate-determining reversible ET process to be coupled only to the inner-sphere reorganization (minimal elongation/shortening of an Fe-OH₂ bond) rather than the pronounced detachment (rebinding) of water and, hence, to be much faster.
Collapse
Affiliation(s)
- Dimitri E Khoshtariya
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg , 91058 Erlangen, Germany
| | | | | | | |
Collapse
|