• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604061)   Today's Articles (2575)   Subscriber (49371)
For: Smirnov GS, Stegailov VV. Melting and superheating of sI methane hydrate: Molecular dynamics study. J Chem Phys 2012;136:044523. [DOI: 10.1063/1.3679860] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Li K, Chen B, Yang M, Song Y, Sum AK. Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations. J Chem Phys 2023;159:244505. [PMID: 38153154 DOI: 10.1063/5.0174705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]  Open
2
Hao X, Li C, Meng Q, Sun J, Huang L, Bu Q, Li C. Molecular Dynamics Simulation of the Three-Phase Equilibrium Line of CO2 Hydrate with OPC Water Model. ACS OMEGA 2023;8:39847-39854. [PMID: 37901483 PMCID: PMC10601413 DOI: 10.1021/acsomega.3c05673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
3
Chaudhury A, Moorjani B, Chatterjee S, Adhikari J, Hait S. Molecular insights into the dissociation of carbon dioxide hydrates in the presence of an ionic liquid, [BMIM][PF6]. Chem Phys 2023;571:111943. [DOI: 10.1016/j.chemphys.2023.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
4
Guerra A, Mathews S, Su JT, Marić M, Servio P, Rey AD. Molecular dynamics predictions of transport properties for carbon dioxide hydrates under pre-nucleation conditions using TIP4P/Ice water and EPM2, TraPPE, and Zhang carbon dioxide potentials. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
5
Grabowska J, Blazquez S, Sanz E, Zerón IM, Algaba J, Míguez JM, Blas FJ, Vega C. Solubility of Methane in Water: Some Useful Results for Hydrate Nucleation. J Phys Chem B 2022;126:8553-8570. [PMID: 36222501 DOI: 10.1021/acs.jpcb.2c04867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
6
Guerra A, Mathews S, Marić M, Servio P, Rey AD. All-Atom Molecular Dynamics of Pure Water-Methane Gas Hydrate Systems under Pre-Nucleation Conditions: A Direct Comparison between Experiments and Simulations of Transport Properties for the Tip4p/Ice Water Model. MOLECULES (BASEL, SWITZERLAND) 2022;27:molecules27155019. [PMID: 35956968 PMCID: PMC9370622 DOI: 10.3390/molecules27155019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
7
Hao X, Li C, Liu C, Meng Q, Sun J. The performance of OPC water model in prediction of the phase equilibria of methane hydrate. J Chem Phys 2022;157:014504. [DOI: 10.1063/5.0093659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Riera M, Hirales A, Ghosh R, Paesani F. Data-Driven Many-Body Models with Chemical Accuracy for CH4/H2O Mixtures. J Phys Chem B 2020;124:11207-11221. [DOI: 10.1021/acs.jpcb.0c08728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
10
Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. ENERGIES 2020. [DOI: 10.3390/en13133396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
11
Yu KB, Yazaydin AO. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020;124:11015-11022. [PMID: 32582402 PMCID: PMC7304911 DOI: 10.1021/acs.jpcc.0c02246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Indexed: 05/23/2023]
12
Sizova AA, Sizov VV, Brodskaya EN. Molecular Dynamics Simulation of the Stability of Spherical Nanoclusters of Methane and Carbon Dioxide Hydrates. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x2002012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
13
Kondori J, James L, Zendehboudi S. Molecular scale modeling approach to evaluate stability and dissociation of methane and carbon dioxide hydrates. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Kondori J, Zendehboudi S, James L. Molecular dynamic simulations to evaluate dissociation of hydrate structure II in the presence of inhibitors: A mechanistic study. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
15
Ghaani MR, English NJ. Hydrogen-/propane-hydrate decomposition: thermodynamic and kinetic analysis. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1567845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
16
Choudhary N, Chakrabarty S, Roy S, Kumar R. A comparison of different water models for melting point calculation of methane hydrate using molecular dynamics simulations. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
17
Tsimpanogiannis IN, Costandy J, Kastanidis P, El Meragawi S, Michalis VK, Papadimitriou NI, Karozis SN, Diamantonis NI, Moultos OA, Romanos GE, Stubos AK, Economou IG. Using clathrate hydrates for gas storage and gas-mixture separations: experimental and computational studies at multiple length scales. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1471224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
18
Yuhara D, Brumby PE, Wu DT, Sum AK, Yasuoka K. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations. J Chem Phys 2018;148:184501. [DOI: 10.1063/1.5016609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
19
Ghaani MR, English NJ. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis. J Chem Phys 2018;148:114504. [PMID: 29566503 DOI: 10.1063/1.5018192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
20
Hirata M, Yagasaki T, Matsumoto M, Tanaka H. Phase Diagram of TIP4P/2005 Water at High Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017;33:11561-11569. [PMID: 28796510 DOI: 10.1021/acs.langmuir.7b01764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
21
13 The Role of Molecular Thermodynamics in Developing Industrial Processes and Novel Products That Meet the Needs for a Sustainable Future. ACTA ACUST UNITED AC 2017. [DOI: 10.1201/9781315153209-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
22
Waage MH, Vlugt TJH, Kjelstrup S. Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations. J Phys Chem B 2017;121:7336-7350. [DOI: 10.1021/acs.jpcb.7b03071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Smirnov KS. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites. Phys Chem Chem Phys 2017;19:23095-23105. [DOI: 10.1039/c7cp01985h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
24
Alavi S, Ohmura R. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates. J Chem Phys 2016;145:154708. [DOI: 10.1063/1.4964673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
25
A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence. Int J Mol Sci 2016;17:ijms17060378. [PMID: 27240339 PMCID: PMC4926321 DOI: 10.3390/ijms17060378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]  Open
26
Luis D, López-Lemus J, Maspoch ML, Franco-Urquiza E, Saint-Martin H. Methane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1139704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
27
Yagasaki T, Matsumoto M, Tanaka H. Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Phys Chem Chem Phys 2015;17:32347-57. [PMID: 26587576 DOI: 10.1039/c5cp03008k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Luis DP, Herrera-Hernández EC, Saint-Martin H. A theoretical study of the dissociation of the sI methane hydrate induced by an external electric field. J Chem Phys 2015;143:204503. [PMID: 26627964 DOI: 10.1063/1.4936214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
29
Xu J, Gu T, Sun Z, Li X, Wang X. Molecular dynamics study on the dissociation of methane hydrate via inorganic salts. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1081708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
30
Dureckova H, Woo TK, Alavi S, Ripmeester JA. Molecular dynamics simulation of halogen bonding in Cl2, BrCl, and mixed Cl2/Br2 clathrate hydrates. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
31
Yuhara D, Barnes BC, Suh D, Knott BC, Beckham GT, Yasuoka K, Wu DT, Sum AK. Nucleation rate analysis of methane hydrate from molecular dynamics simulations. Faraday Discuss 2015;179:463-74. [PMID: 25876773 DOI: 10.1039/c4fd00219a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Míguez JM, Conde MM, Torré JP, Blas FJ, Piñeiro MM, Vega C. Molecular dynamics simulation of CO2hydrates: Prediction of three phase coexistence line. J Chem Phys 2015;142:124505. [DOI: 10.1063/1.4916119] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Michalis VK, Costandy J, Tsimpanogiannis IN, Stubos AK, Economou IG. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology. J Chem Phys 2015;142:044501. [DOI: 10.1063/1.4905572] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
34
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.07.047] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
35
Tsimpanogiannis IN, Diamantonis NI, Economou IG, Papadimitriou NI, Stubos AK. Influence of combining rules on the cavity occupancy of clathrate hydrates using van der Waals–Platteeuw-theory-based modelling. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
36
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Dissociation of Methane Hydrate in Aqueous NaCl Solutions. J Phys Chem B 2014;118:11797-804. [DOI: 10.1021/jp507978u] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Huang Y, Liu Y, Su Y, Zhao J. Dissociation mechanism of gas hydrates (I, II, H) of alkane molecules: a comparative molecular dynamics simulation. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.940522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
38
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Effect of Bubble Formation on the Dissociation of Methane Hydrate in Water: A Molecular Dynamics Study. J Phys Chem B 2014;118:1900-6. [DOI: 10.1021/jp412692d] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
39
English NJ, Clarke ET. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis. J Chem Phys 2013;139:094701. [DOI: 10.1063/1.4819269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
40
Mondal S, Giri S, Chattaraj PK. Methane hydrates and their HF doped analogues. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
41
Conde MM, Vega C. Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations. J Chem Phys 2013;138:056101. [DOI: 10.1063/1.4790647] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
42
A molecular dynamics study on sI hydrogen hydrate. J Mol Model 2012;19:2785-90. [DOI: 10.1007/s00894-012-1625-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
43
The Wolf method applied to the type I methane and carbon dioxide gas hydrates. J Mol Graph Model 2012;38:455-64. [DOI: 10.1016/j.jmgm.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/29/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA