1
|
Dietrich F, Becherer M, Bellaire D, Gerhards M. Exploring structures of small anionic nickel-ethanol clusters with infrared spectroscopy. J Chem Phys 2024; 160:204302. [PMID: 38785285 DOI: 10.1063/5.0208122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Small anionic nickel clusters with ethanol are investigated with a combination of mass-selective infrared photodissociation spectroscopy in a molecular beam and density functional theory simulations at the BLYP/6-311g(d,p) and TPSSh/def2-TZVPP level. In this context, the O-H stretching vibration of the ethanol is analyzed to obtain information about the structural motif, the geometry of the metal core, and the spin state of the clusters. For the [Ni2(EtOH)]- and [Ni3(EtOH)]- clusters, we assign quartet states of motifs with a hydrogen bond from the ethanol to the linear nickel core. The aggregation of a further ethanol molecule, yielding the [Ni3(EtOH)2]- cluster, results in the formation of a cooperative hydrogen bond network between the nickel core and the two ethanol molecules.
Collapse
Affiliation(s)
- F Dietrich
- Department of Physics Science, Universidad de La Frontera, Temuco, Chile
| | - M Becherer
- Department of Chemistry and Research Center Optimas, RPTU, Kaiserslautern, Germany
| | - D Bellaire
- Department of Chemistry and Research Center Optimas, RPTU, Kaiserslautern, Germany
| | - M Gerhards
- Department of Chemistry and Research Center Optimas, RPTU, Kaiserslautern, Germany
| |
Collapse
|
2
|
Abstract
Predissociation thresholds corresponding to dissociation at ground state separated atom limits (SALs) have been recorded in this group for more than 100 d- and f-block metal-containing molecules. The metal atom electronic degeneracies in these molecules generate a dense manifold of electronic states that allow high-lying vibronic levels to couple to pathways leading to dissociation. However, CrN, CuB, and AuB fail to dissociate at their ground SAL. Instead, the molecules remain bound at energies that far surpass their bond dissociation energies (BDEs), and their bonds break only when excited at or above an excited SAL. Sharp predissociation thresholds at excited SALs nevertheless allowed BDEs to be derived: D0(CrN): 3.941(22) eV; D0(CuB): 2.26(15) eV; D0(Au11B): 3.724(3) eV. A previous measurement of D0(AlCr) is re-evaluated as dissociating to a higher energy limit, giving a revised value of D0(AlCr) = 1.32(2) eV. A discussion of this physical behavior is presented.
Collapse
Affiliation(s)
- Dakota M Merriles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Merriles DM, Tomchak KH, Ewigleben JC, Morse MD. Predissociation measurements of the bond dissociation energies of EuO, TmO, and YbO. J Chem Phys 2021; 155:144303. [PMID: 34654298 DOI: 10.1063/5.0068543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The observation of a sharp predissociation threshold in the resonant two-photon ionization spectra of EuO, TmO, and YbO has been used to measure the bond dissociation energies of these species. The resulting values, D0(EuO) = 4.922(3) eV, D0(TmO) = 5.242(6) eV, and D0(YbO) = 4.083(3) eV, are in good agreement with previous values but are much more precise. In addition, the ionization energy of TmO was measured by the observation of a threshold for one-color two-photon ionization of this species, resulting in IE(TmO) = 6.56(2) eV. The observation of a sharp predissociation threshold for EuO was initially surprising because the half-filled 4f7 subshell of Eu in its ground state generates fewer potential energy curves than in the other molecules we have studied by this method. The observation of a sharp predissociation threshold in YbO was even more surprising, given that the ground state of Yb is nondegenerate (4f146s2, 1Sg) and the lowest excited state of Yb is over 2 eV higher in energy. It is suggested that these molecules possess a high density of electronic states at the energy of the ground separated atom limit because ion-pair states drop below the ground limit, providing a sufficient electronic state density to allow predissociation to set in at the thermochemical threshold.
Collapse
Affiliation(s)
- Dakota M Merriles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Kimberly H Tomchak
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Joshua C Ewigleben
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Tamukong PK, Hoffmann MR. Low-Lying Electronic States of the Nickel Dimer. Front Chem 2021; 9:678930. [PMID: 34055745 PMCID: PMC8155684 DOI: 10.3389/fchem.2021.678930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 11/15/2022] Open
Abstract
The generalized Van Vleck second order multireference perturbation theory (GVVPT2) method was used to investigate the low-lying electronic states of Ni2. Because the nickel atom has an excitation energy of only 0.025 eV to its first excited state (the least in the first row of transition elements), Ni2 has a particularly large number of low-lying states. Full potential energy curves (PECs) of more than a dozen low-lying electronic states of Ni2, resulting from the atomic combinations 3F4 + 3F4 and 3D3 + 3D3, were computed. In agreement with previous theoretical studies, we found the lowest lying states of Ni2 to correlate with the 3D3 + 3D3 dissociation limit, and the holes in the d-subshells were in the subspace of delta orbitals (i.e., the so-dubbed δδ-states). In particular, the ground state was determined as X 1Γg and had spectroscopic constants: bond length (Re) = 2.26 Å, harmonic frequency (ωe) = 276.0 cm−1, and binding energy (De) = 1.75 eV; whereas the 1 1Σg+ excited state (with spectroscopic constants: Re = 2.26 Å, ωe = 276.8 cm−1, and De = 1.75) of the 3D3 + 3D3 dissociation channel lay at only 16.4 cm−1 (0.002 eV) above the ground state at the equilibrium geometry. Inclusion of scalar relativistic effects through the spin-free exact two component (sf-X2C) method reduced the bond lengths of both of these two states to 2.20 Å, and increased their binding energies to 1.95 eV and harmonic frequencies to 296.0 cm−1 for X 1Γg and 297.0 cm−1 for 1 1Σg+. These values are in good agreement with experimental values of Re = 2.1545 ± 0.0004 Å, ωe = 280 ± 20 cm−1, and D0 = 2.042 ± 0.002 eV for the ground state. All states considered within the 3F4 + 3F4 dissociation channel proved to be energetically high-lying and van der Waals-like in nature. In contrast to most previous theoretical studies of Ni2, full PECs of all considered electronic states of the molecule were produced.
Collapse
Affiliation(s)
- Patrick K Tamukong
- Chemistry Department, University of North Dakota, Grand Forks, ND, United States
| | - Mark R Hoffmann
- Chemistry Department, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
5
|
Sorensen JJ, Tieu E, Morse MD. Bond dissociation energies of diatomic transition metal selenides: ScSe, YSe, RuSe, OsSe, CoSe, RhSe, IrSe, and PtSe. J Chem Phys 2020; 152:124305. [PMID: 32241137 DOI: 10.1063/5.0003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diatomic transition metal selenides, MSe (M = Sc, Y, Ru, Os, Co, Rh, Ir, and Pt), were studied by resonant two-photon ionization spectroscopy near their respective bond dissociation energies. As these molecules exhibit high densities of vibronic states near their dissociation limits, the spectra typically appear quasicontinuously at these energies. Spin-orbit and nonadiabatic couplings among the multitudes of potential curves allow predissociation to occur on a rapid timescale when the molecule is excited to states lying above the ground separated atom limit. This dissociation process occurs so rapidly that the molecules are dissociated before they can be ionized by the absorption of a second photon. This results in an abrupt drop in the ion signal that is assigned as the 0 K bond dissociation energy for the molecule, giving bond dissociation energies of 4.152(3) eV (ScSe), 4.723(3) eV (YSe), 3.482(3) eV (RuSe), 3.613(3) eV (OsSe), 2.971(6) eV (CoSe), 3.039(9) eV (RhSe), 3.591(3) eV (IrSe), and 3.790(31) eV (PtSe). The enthalpies of formation, ΔfH0K° (g), for each diatomic metal selenide were calculated using thermochemical cycles, yielding ΔfH0K° (g) values of 210.9(4.5) kJ mol-1 (ScSe), 203.5(4.5) kJ mol-1 (YSe), 549.2(4.5) kJ mol-1 (RuSe), 675.9(6.5) kJ mol-1 (OsSe), 373.9(2.6) kJ mol-1 (CoSe), 497.4(2.7) kJ mol-1 (RhSe), 557.4(6.5) kJ mol-1 (IrSe), and 433.7(3.6) kJ mol-1 (PtSe). Utilizing a thermochemical cycle, the ionization energy for ScSe is estimated to be about 7.07 eV. The bonding trends of the transition metal selenides are discussed.
Collapse
Affiliation(s)
- Jason J Sorensen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Erick Tieu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Wang F, Li T, Shi Y, Jiao H. Molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt) – metal and surface dependent structure and stability. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00504e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface and metal-dependent morphologies and energies of molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt) have been systematically investigated on the basis of periodic density functional theory computations.
Collapse
Affiliation(s)
- Fan Wang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rosteock
- Germany
| | - Teng Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Yun Shi
- School of Chemistry & Chemical Engineering
- Linyi University
- Linyi 276000
- China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rosteock
- Germany
| |
Collapse
|
7
|
Abstract
A fundamental need in chemistry is understanding the chemical bond, for which the most quantitative measure is the bond dissociation energy (BDE). While BDEs of chemical bonds formed from the lighter main group elements are generally well-known and readily calculated by modern computational chemistry, chemical bonds involving the transition metals, lanthanides, and actinides remain computationally extremely challenging. This is due to the simultaneous importance of electron correlation, spin-orbit interaction, and other relativistic effects, coupled with the large numbers of low-lying states that are accessible in systems with open d or f subshells. The development of efficient and accurate computational methods for these species is currently a major focus of the field. An obstacle to this effort has been the scarcity of highly precise benchmarks for the BDEs of M-X bonds. For most of the transition metal, lanthanide, or actinide systems, tabulated BDEs of M-X bonds have been determined by Knudsen effusion mass spectrometric measurements of high-temperature equilibria. The measured ion signals are converted to pressures and activities of the species involved in the equilibrium, and the equilibrium constants are then analyzed using a van't Hoff plot or the third-law method to extract the reaction enthalpy, which is extrapolated to 0 K to obtain the BDE. This procedure introduces errors at every step and ultimately leads to BDEs that are typically uncertain by 2-20 kcal mol-1 (0.1-1 eV). A second method in common use employs a thermochemical cycle in which the ionization energies of the MX molecule and M atom are combined with the BDE of the M+-X bond, obtained via guided ion beam mass spectrometry, to yield the BDE of the neutral, M-X. When accurate values of all three components of the cycle are available, this method yields good results-but only rarely are all three values available. We have recently implemented a new method for the precise measurement of BDEs in molecules with large densities of electronic states that is based on the rapid predissociation of these species as soon as the ground separated atom limit is exceeded. When a sharp predissociation threshold is observed, its value directly provides the BDE of the system. With this method, we are able in favorable cases to determine M-X BDEs to an accuracy of ∼0.1 kcal mol-1 (0.004 eV). The method is generally applicable to species that have a high density of states at the ground separated atom limit and has been used to measure the BDEs of more than 50 transition metal-main group MX molecules thus far. In addition, a number of metal-metal BDEs have also been measured with this method. There are good prospects for the extension of the method to polyatomic systems and to lanthanide and actinide-containing molecules. These precise BDE measurements provide chemical trends for the BDEs across the transition metal series, as well as crucial benchmarks for the development of efficient and accurate computational methods for the d- and f-block elements.
Collapse
Affiliation(s)
- Michael D. Morse
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Duncan Lyngdoh RH, Schaefer HF, King RB. Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc. Chem Rev 2018; 118:11626-11706. [PMID: 30543419 DOI: 10.1021/acs.chemrev.8b00297] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) n+, (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging. The combination of experimental and computational results leads us to propose for the first time the ranges and "best" estimates for MM bond distances of all types (Ti-Ti through Zn-Zn, single through quintuple).
Collapse
Affiliation(s)
| | - Henry F Schaefer
- Centre for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - R Bruce King
- Centre for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
9
|
Zhou X, Chu W, Sun W, Zhou Y, Xue Y. Enhanced interaction of nickel clusters with pyridinic-N (B) doped graphene using DFT simulation. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Cervantes-Flores A, Cruz-Martínez H, Solorza-Feria O, Calaminici P. A first-principles study of Ni n Pd n (n = 1 - 5) clusters. J Mol Model 2017; 23:161. [PMID: 28409287 DOI: 10.1007/s00894-017-3327-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
A first-principle investigation of structures and properties of Ni n Pd n (n=1-5) clusters is presented. For this study, the linear combination of Gaussian-type orbitals auxiliary density functional theory (LCGTO-ADFT) method has been employed. In order to determine the lowest energy structures, several isomers in different spin multiplicities were studied, for each cluster size. Initial structures, for which successive geometry optimization was computed without any constrain, were taken along Born-Oppenheimer molecular dynamics (BOMD) trajectories. To discriminate between minima and transition state structures, harmonic frequency analyses were performed at the optimized structures. Ground state structures, bond lengths, harmonic frequencies, dissociation energy, ionization potential, electron affinity and spin density plots are presented. This work demonstrates, that the Pd atoms prefer to allocate on the surface of the cluster structures whose core is formed by the 3d TM atoms type. Moreover, it has been observed that the ground-state structure spin multiplicity increases as the system size grows. The results of this study contribute to gain insight into how structures and energy properties change with cluster size in bimetallic Pd-based alloys.
Collapse
Affiliation(s)
- Aldo Cervantes-Flores
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México
| | - Heriberto Cruz-Martínez
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México
| | - Omar Solorza-Feria
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México
| | - Patrizia Calaminici
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional 2508, AP 14-740, México, D.F., 07000, México.
| |
Collapse
|
11
|
Zheng X, Guo L, Li W, Cao Z, Liu N, Shi Y, Guo J. Cu n TM: Promising catalysts for preferential oxidation of CO in H 2 -rich gas. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Johnson EL, Davis QC, Morse MD. Predissociation measurements of bond dissociation energies: VC, VN, and VS. J Chem Phys 2016; 144:234306. [DOI: 10.1063/1.4953782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eric L. Johnson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Quincy C. Davis
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Michael D. Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
13
|
Cao Z, Guo L, Liu N, An X, Li A. Density Functional Study of Catalytic Activity of Cu12TM for Water Gas Shift Reaction. CATALYSIS SURVEYS FROM ASIA 2016. [DOI: 10.1007/s10563-015-9207-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chaudhuri D, Jin W, Lefkidis G, Hübner W. Ab initio theory for femtosecond spin dynamics, angle-resolved fidelity analysis, and the magneto-optical Kerr effect in the Ni3(CH3OH) and Co3+(CH3OH) clusters. J Chem Phys 2015; 143:174303. [DOI: 10.1063/1.4932949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. Chaudhuri
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - W. Jin
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - G. Lefkidis
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - W. Hübner
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| |
Collapse
|
15
|
|
16
|
Pakiari AH, Pahlavan F. The electronic structures of small Ni(n) (n=2-4) clusters and their interactions with ethylene and triplet oxygen: a theoretical study. Chemphyschem 2014; 15:4055-66. [PMID: 25263214 DOI: 10.1002/cphc.201402467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 11/10/2022]
Abstract
Density functional theory (DFT) calculations of small nickel clusters and their interacting systems are carried out using the BLYP and B97-2 methods, after DFT calibration. All bare nickel clusters in this study have high multiplicities and are paramagnetic. Our results for the interactions between ethylene and oxygen with Ni(n) (n=2-4) clusters at different adsorption modes show that for ethylene, π-orientation is preferred, and that oxygen adsorption in a bridge mode is stronger than on-top coordination. Vibrational frequency analysis reveals that the vibrational modes of ethylene π-coordinated to nickel clusters converge toward the corresponding value for surface-bound ethylene, as the cluster size increases from two to four, showing that finite clusters can be used as localized models for ligand adsorption on nickel surfaces. We also calculate DFT global reactivity descriptors, chemical potential and hardness, and use these to predict the relative stability and reactivity of each bare cluster.
Collapse
Affiliation(s)
- Ali H Pakiari
- Chemistry Department, College of Science, Shiraz University, Eram square, Eram street 7146713565 Shiraz (Iran).
| | | |
Collapse
|
17
|
Kong F, Hu Y. Density functional theory study of small X-doped Mg(n) (X = Fe, Co, Ni, n = 1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties. J Mol Model 2014; 20:2087. [PMID: 24535105 DOI: 10.1007/s00894-014-2087-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022]
Abstract
The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).
Collapse
Affiliation(s)
- Fanjie Kong
- Department of Physics, Yancheng Institute of Technology, Yancheng, 224051, China,
| | | |
Collapse
|
18
|
Liu Z, Wang Y, Li J, Zhang R. The effect of γ-Al2O3 surface hydroxylation on the stability and nucleation of Ni in Ni/γ-Al2O3 catalyst: a theoretical study. RSC Adv 2014. [DOI: 10.1039/c3ra46352d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
19
|
Qian Y, Ng YW, Chen Z, Cheung ASC. Electronic transitions of palladium dimer. J Chem Phys 2013; 139:194303. [DOI: 10.1063/1.4829767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Density-Functional Theory Study on Neutral and Charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) Clusters. J CLUST SCI 2012. [DOI: 10.1007/s10876-012-0543-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Cheskidov AV, Buchachenko AA, Bezrukov DS. Ab initio spin-orbit calculations on the lowest states of the nickel dimer. J Chem Phys 2012; 136:214304. [PMID: 22697540 DOI: 10.1063/1.4721624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alexander V Cheskidov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | | |
Collapse
|
22
|
Chikhaoui A, Haddab K, Bouarab S, Vega A. Density Functional Study of the Structures and Electronic Properties of Nitrogen-Doped Nin Clusters, n = 1–10. J Phys Chem A 2011; 115:13997-4005. [DOI: 10.1021/jp207861p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Chikhaoui
- Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-Ouzou, B.P. No. 17 RP, 15000 Tizi-Ouzou, Algeria
| | - K. Haddab
- Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-Ouzou, B.P. No. 17 RP, 15000 Tizi-Ouzou, Algeria
| | - S. Bouarab
- Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-Ouzou, B.P. No. 17 RP, 15000 Tizi-Ouzou, Algeria
| | - A. Vega
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid, Spain
| |
Collapse
|
23
|
Venkataramanan NS, Sahara R, Mizuseki H, Kawazoe Y. Titanium-Doped Nickel Clusters TiNin (n = 1−12): Geometry, Electronic, Magnetic, and Hydrogen Adsorption Properties. J Phys Chem A 2010; 114:5049-57. [DOI: 10.1021/jp100459c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Royoji Sahara
- Institute for Materials Research (IMR), 2-1-1, Katahira, Aoba-Ku, Sendai 980 8577, Japan
| | - Hiroshi Mizuseki
- Institute for Materials Research (IMR), 2-1-1, Katahira, Aoba-Ku, Sendai 980 8577, Japan
| | - Yoshiyuki Kawazoe
- Institute for Materials Research (IMR), 2-1-1, Katahira, Aoba-Ku, Sendai 980 8577, Japan
| |
Collapse
|
24
|
Davlyatshin DI, Serebrennikov LV, Golovkin AV. Small nickel clusters: Two low-lying Ni3 states. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2009. [DOI: 10.1134/s0036024409120152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Nagarajan R, Sickafoose SM, Morse MD. Rotationally resolved spectra of jet-cooled VMo. J Chem Phys 2007; 127:014311. [PMID: 17627350 DOI: 10.1063/1.2747617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors report the first gas-phase spectroscopic investigation of diatomic vanadium molybdenum (VMo). The molecules were produced by laser ablation of a VMo alloy disk and cooled in a helium supersonic expansion. The jet-cooled VMo molecules were studied using resonant two-photon ionization spectroscopy. The ground state has been demonstrated to be of (2)Delta(52) symmetry, deriving from the dsigma(2)dpi(4)ddelta(3)ssigma(2) electronic configuration. Rotational analysis has established the ground state bond length and rotational constant as r(0) (")=1.876 57(23) A and B(0) (")=0.142 861(35) cm(-1), respectively, for (51)V(98)Mo (1sigma error limits). Transitions to states with Omega(')=2.5, Omega(')=3.5, and Omega(')=1.5 have been recorded and rotationally analyzed. A band system originating at 15 091 cm(-1) has been found to exhibit a vibrational progression with omega(e) (')=752.7 cm(-1), omega(e) (')x(e) (')=12.8 cm(-1), and r(0) (')=1.90 A for (51)V(98)Mo. The measured bond lengths (r(0)) of V(2), VNb, Nb(2), Cr(2), CrMo, Mo(2), VCr, NbCr, and VMo have been used to derive multiple bonding radii for these elements of r(V)=0.8919 A, r(Nb)=1.0424 A, r(Cr)=0.8440 A, and r(Mo)=0.9725 A. These values reproduce the bond lengths of all nine diatomics to an accuracy of +/-0.012 A or better.
Collapse
Affiliation(s)
- Ramya Nagarajan
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
26
|
Schultz NE, Zhao Y, Truhlar DG. Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J Phys Chem A 2007; 109:4388-403. [PMID: 16833770 DOI: 10.1021/jp0504468] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We propose a data set of bond lengths for 8 selected transition metal dimers (Ag(2), Cr(2), Cu(2), CuAg, Mo(2), Ni(2), V(2), and Zr(2)) and another data set containing their atomization energies and the atomization energy of ZrV, and we use these for testing density functional theory. The molecules chosen for the test sets were selected on the basis of the expected reliability of the data and their ability to constitute a diverse and representative set of transition element bond types while the data sets are kept small enough to allow for efficient testing of a large number of computational methods against a very reliable subset of experimental data. In this paper we test 42 different functionals: 2 local spin density approximation (LSDA) functionals, 12 generalized gradient approximation (GGA) methods, 13 hybrid GGAs, 7 meta GGA methods, and 8 hybrid meta GGAs. We find that GGA density functionals are more accurate for the atomization energies of pure transition metal systems than are their meta, hybrid, or hybrid meta analogues. We find that the errors for atomization energies and bond lengths are not as large if we limit ourselves to dimers with small amounts of multireference character. We also demonstrate the effects of increasing the fraction of Hartree-Fock exchange in multireference systems by computing the potential energy curve for Cr(2) and Mo(2) with several functionals. We also find that BLYP is the most accurate functional for bond energies and is reasonably accurate for bond lengths. The methods that work well for transition metal bonds are found to be quite different from those that work well for organic and other main group chemistry.
Collapse
Affiliation(s)
- Nathan E Schultz
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, MN 55455-0431, USA
| | | | | |
Collapse
|
27
|
López Arvizu G, Calaminici P. Assessment of density functional theory optimized basis sets for gradient corrected functionals to transition metal systems: The case of small Nin (n⩽5) clusters. J Chem Phys 2007; 126:194102. [PMID: 17523793 DOI: 10.1063/1.2735311] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Density functional calculations have been performed for small nickel clusters, Ni(n), Ni(n) (+), and Ni(n)(-) (n<or=5), using the linear combination of Gaussian-type orbital density functional theory approach. Newly developed nickel all-electron basis sets optimized for generalized gradient approximation (GGA) as well as an all-electron basis set optimized for the local density approximation were employed. For both neutral and charged systems, several isomers and different multiplicities were studied in order to determine the lowest energy structures. A vibrational analysis was performed in order to characterize these isomers. Structural parameters, harmonic frequencies, binding energies, ionization potentials, and electron affinities are reported. This work shows that the employed GGA basis sets for the nickel atom are important for the correct prediction of the ground state structures of small nickel clusters and that the structural assignment of these systems can be performed, with a good resolution, over the ionization potential.
Collapse
Affiliation(s)
- Gregorio López Arvizu
- Departamento de Quimica, CINVESTAV, Avenida Instituto Politecnico Nacional 2508, Apartado Postal 14-740 07000 Mexico, Distrito Federal Mexico
| | | |
Collapse
|
28
|
|
29
|
St Petkov P, Vayssilov GN, Krüger S, Rösch N. Influence of Single Impurity Atoms on the Structure, Electronic, and Magnetic Properties of Ni5 Clusters. J Phys Chem A 2007; 111:2067-76. [PMID: 17388298 DOI: 10.1021/jp0675431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With a gradient-corrected density functional method, we have studied computationally the influence of single impurity atoms on the structure, electronic, and magnetic properties of Ni5 clusters. The square-pyramidal isomer of bare Ni5 with six unpaired electrons was calculated 23 kJ/mol more stable than the trigonal bipyramid in its lowest-energy electronic configuration with four unpaired electrons. In a previous study on the cluster Ni4, we had obtained only one stable isomer with an O or an H impurity, but we located six minima for ONi5 and five minima for HNi5. In the most stable structures of HNi5, the H atom bridges a Ni-Ni edge at the base or the side of the square pyramid, similarly to the coordination of an H atom at the tetrahedral cluster Ni4. The most stable ONi5 isomers exhibit a trigonal bipyramidal structure of the Ni5 moiety, with the impurity coordinated at a facet, (micro3-O)Ni5, or at an apex edge, (micro-O)Ni5. We located four stable structures for a C impurity at a Ni5 cluster. As for CNi4, the most stable structure of the corresponding Ni5 complex comprises a four-coordinated C atom, (micro4-C)Ni5, and can be considered as insertion of the impurity into a Ni-Ni bond of the bare cluster. All structures with C and five with O impurity have four unpaired electrons, while the number of unpaired electrons in the clusters HNi5 varies between 3 and 7. As a rough trend, the ionization potentials and electron affinities of the clusters with impurity atoms decrease with the coordination number of the impurity. However, the position of the impurity and the shape of the metal moiety also affect the results. Coordination of an impurity atom leads to a partial oxidation of the metal atoms.
Collapse
Affiliation(s)
- Petko St Petkov
- Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria
| | | | | | | |
Collapse
|
30
|
Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B. Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J Chem Phys 2007; 126:044108. [PMID: 17286463 DOI: 10.1063/1.2431643] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.
Collapse
Affiliation(s)
- Patrizia Calaminici
- Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, Apartado postal 14-740, México, Distrito Federal 07000, Mexico.
| | | | | | | | | |
Collapse
|
31
|
Florez E, Mondragón F, Fuentealba P. Effect of Ni and Pd on the Geometry, Electronic Properties, and Active Sites of Copper Clusters. J Phys Chem B 2006; 110:13793-8. [PMID: 16836325 DOI: 10.1021/jp060521u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The geometry, electronic properties, and active sites of copper clusters doped with Ni or Pd atoms, Cu(n)()(-)(1)M (n = 2-6; M = Ni, Pd) have been investigated using first-principles methods. Planar structures are energetically favorable in Cu(n)()(-)(1)Ni (n = 2-6). However, for Pd-doped clusters, three-dimensional structures are competitive in energy, and for n = 6, the most stable structure is not planar. Several properties of doped copper clusters present odd-even oscillations as the number of copper atoms grow. The different atomic ground-state configuration of Ni and Pd determines the bonding and electronic properties of doped copper clusters. The interaction between impurities and copper atoms can modify the chemical hardness and active sites of doped copper clusters markedly inducing directionality in the reactivity. This effect is relevant to the behavior of catalysts as well as in the growth of metallic films.
Collapse
Affiliation(s)
- Elizabeth Florez
- Institute of Chemistry, University of Antioquia, A.A. 1226, Medellín, Colombia
| | | | | |
Collapse
|
32
|
Wang J, Han JG. A Theoretical Study on Growth Patterns of Ni-Doped Germanium Clusters. J Phys Chem B 2006; 110:7820-7. [PMID: 16610878 DOI: 10.1021/jp0571675] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ni-doped germanium clusters have been systematically investigated by using the density functional approach. The growth-pattern behaviors, stabilities, charge transfer, and polarities of these clusters are discussed in detail. Obviously different growth patterns appear between small-sized Ni-doped germanium clusters and middle- or larger-sized Ni-doped germanium clusters. The Ni-convex or substituted Ge(n) frames for small-sized clusters as well as Ni-concaved or encapsulated Ge(n) frames for middle- or large-sized clusters are dominant growth patterns. The calculated fragmentation energies manifest that the magic numbers of stabilities are 5, 8, 10, and 13 for Ni-doped germanium clusters; the obtained relative stabilities exhibit that the Ni-encapsulated Ge(10) cluster is the most stable species of all different-sized clusters, which is in good agreement with available experimental observations of CoGe(10)(-). Natural population analysis shows that different charge-transfer phenomena depend on the sizes of the Ni-doped Ge(n) clusters. Additionally, the properties of frontier orbitals and the polarities of Ni-doped Ge(n) clusters are also discussed.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | | |
Collapse
|
33
|
Rothschopf GK, Morse MD. Monoligated Monovalent Ni: the 3dNi9 Manifold of States of NiCu and Comparison to the 3d9 States of AlNi, NiH, NiCl, and NiF. J Phys Chem A 2005; 109:11358-64. [PMID: 16354022 DOI: 10.1021/jp053022m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.
Collapse
|
34
|
Aleksandrov HA, Vayssilov GN, Rösch N. Theoretical Investigation of the Coordination of N2 Ligands to the Cluster Ni3. J Phys Chem A 2004. [DOI: 10.1021/jp048923u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hristiyan A. Aleksandrov
- Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria, and Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Georgi N. Vayssilov
- Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria, and Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Notker Rösch
- Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria, and Department Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
35
|
Valiev M, Bylaska EJ, Weare JH. Calculations of the electronic structure of 3d transition metal dimers with projector augmented plane wave method. J Chem Phys 2003. [DOI: 10.1063/1.1602694] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Vardhan D, Liyanage R, Armentrout PB. Guided ion beam studies of the reactions of Nin+ (n=2–18) with O2: Nickel cluster oxide and dioxide bond energies. J Chem Phys 2003. [DOI: 10.1063/1.1592502] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
|
38
|
Gutsev GL, Bauschlicher CW. Chemical Bonding, Electron Affinity, and Ionization Energies of the Homonuclear 3d Metal Dimers. J Phys Chem A 2003. [DOI: 10.1021/jp030146v] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Jules JL, Lombardi JR. Transition Metal Dimer Internuclear Distances from Measured Force Constants. J Phys Chem A 2003. [DOI: 10.1021/jp027493+] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Lombardi JR, Davis B. Periodic properties of force constants of small transition-metal and lanthanide clusters. Chem Rev 2002; 102:2431-60. [PMID: 12059275 DOI: 10.1021/cr010425j] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John R Lombardi
- Department of Chemistry and Center for Analysis of Structures and Interfaces (CASI), The City College of New York, Convent Ave. at 138th Street, New York, NY 10031, USA.
| | | |
Collapse
|
41
|
Adamo C, Barone V. Physically motivated density functionals with improved performances: The modified Perdew–Burke–Ernzerhof model. J Chem Phys 2002. [DOI: 10.1063/1.1458927] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
|
43
|
Fabbi JC, Langenberg JD, Costello QD, Morse MD, Karlsson L. Dispersed fluorescence spectroscopy of jet-cooled AgAu and Pt2. J Chem Phys 2001. [DOI: 10.1063/1.1407273] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Abstract
This review discusses the reactivities and thermodynamics of small-size-specific transition metal clusters and focuses on thermodynamic information, which has not been comprehensively discussed before. Because of this focus, guided-ion-beam mass spectrometry was used to acquire much of the data. The details of this technique and the associated data analysis methods are provided. Results on the stabilities of bare transition metal clusters are provided for neutral, cationic, and anionic species. Implications for the electronic and geometrical structures are discussed, as well as the extrapolation of these values to bulk phase behavior. Detailed results for reactions of transition metal clusters with D2 and the oxygen donors O2 and CO2 are reviewed. Available bond energies between size-specific clusters and one D atom and one and two O atoms are compiled, and their implications are evaluated and favorably compared with bulk phase analogs. Several additional thermodynamic studies of various cluster systems are also discussed.
Collapse
Affiliation(s)
- P Armentrout
- Chemistry Department, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
45
|
Krüger S, Stener M, Rösch N. Relativistic density functional study of gold coated magnetic nickel clusters. J Chem Phys 2001. [DOI: 10.1063/1.1349058] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Pis Diez R, Alonso JA. Theoretical evidence of bound metastable states in the doubly ionized nickel dimer Ni22+. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)01321-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Barden CJ, Rienstra-Kiracofe JC, Schaefer HF. Homonuclear 3d transition-metal diatomics: A systematic density functional theory study. J Chem Phys 2000. [DOI: 10.1063/1.481916] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Alonso JA. Electronic and atomic structure, and magnetism of transition-metal clusters. Chem Rev 2000; 100:637-78. [PMID: 11749247 DOI: 10.1021/cr980391o] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J A Alonso
- Departamento de Física Teórica, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
49
|
Chen B, Castleman A, Khanna S. Structure, reactivity, and magnetism: adsorption of NH3 around Nin. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)00328-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
|