• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4603666)   Today's Articles (247)   Subscriber (49370)
For: Sekino H, Bartlett RJ. Nuclear spin–spin coupling constants evaluated using many body methods. J Chem Phys 1986. [DOI: 10.1063/1.450916] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
Number Cited by Other Article(s)
1
Jessen LM, Sauer SPA. On the performance of HRPA(D) for NMR spin-spin coupling constants: Smaller molecules, aromatic and fluoroaromatic compounds. J Chem Phys 2024;160:064102. [PMID: 38341775 DOI: 10.1063/5.0189932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024]  Open
2
Rusakov YY, Rusakova IL. New pecJ-n (n = 1, 2) Basis Sets for Selenium Atom Purposed for the Calculations of NMR Spin-Spin Coupling Constants Involving Selenium. Int J Mol Sci 2023;24:ijms24097841. [PMID: 37175548 PMCID: PMC10178039 DOI: 10.3390/ijms24097841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]  Open
3
New pecJ-n (n = 1, 2) Basis Sets for High-Quality Calculations of Indirect Nuclear Spin–Spin Coupling Constants Involving 31P and 29Si: The Advanced PEC Method. Molecules 2022;27:molecules27196145. [PMID: 36234706 PMCID: PMC9573013 DOI: 10.3390/molecules27196145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]  Open
4
Opoku E, Pawłowski F, Ortiz JV. Electron Propagator Self-Energies versus Improved GW100 Vertical Ionization Energies. J Chem Theory Comput 2022;18:4927-4944. [PMID: 35822816 DOI: 10.1021/acs.jctc.2c00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
5
Steinmann C, Sauer SPA. The aug-cc-pVTZ-J basis set for the p-block fourth-row elements Ga, Ge, As, Se, and Br. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021;59:1134-1145. [PMID: 33929770 DOI: 10.1002/mrc.5166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
6
Kjellgren ER, Jensen HJA. Multi-configurational short-range density functional theory can describe spin-spin coupling constants of transition metal complexes. J Chem Phys 2021;155:084102. [PMID: 34470359 DOI: 10.1063/5.0059128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Rusakov YY, Rusakova IL. An efficient method for generating property-energy consistent basis sets. New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin-spin coupling constants involving 1H, 13C, 15N, and 19F nuclei. Phys Chem Chem Phys 2021;23:14925-14939. [PMID: 34223856 DOI: 10.1039/d1cp01984h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
8
Møller CHS, Schnack-Petersen AK, Sauer SPA. RPA(D) and HRPA(D): calculation of carbon–carbon spin–spin coupling constants for saturated cycloalkanes. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1757773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
9
Schnack-Petersen AK, Haase PAB, Faber R, Provasi PF, Sauer SPA. RPA(D) and HRPA(D): Two new models for calculations of NMR indirect nuclear spin-spin coupling constants. J Comput Chem 2019;39:2647-2666. [PMID: 30515901 DOI: 10.1002/jcc.25712] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/26/2018] [Accepted: 09/23/2018] [Indexed: 01/21/2023]
10
Caputo MC, Alkorta I, Provasi PF, Sauer SPA. Analysis of the interactions in FCCF:(H2O) and FCCF:(H2O)2 complexes through the study of their indirect spin–spin coupling constants. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1488006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
11
Peng D, Li S, Peng L, Gu FL, Yang W. Time-Dependent Coupled Perturbed Hartree-Fock and Density-Functional-Theory Approach for Calculating Frequency-Dependent (Hyper)Polarizabilities with Nonorthogonal Localized Molecular Orbitals. J Chem Theory Comput 2017;13:4101-4112. [PMID: 28806078 DOI: 10.1021/acs.jctc.7b00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Faber R, Sauer SPA, Gauss J. Importance of Triples Contributions to NMR Spin-Spin Coupling Constants Computed at the CC3 and CCSDT Levels. J Chem Theory Comput 2017;13:696-709. [PMID: 27992184 DOI: 10.1021/acs.jctc.6b01003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Li S, Hu L, Peng L, Yang W, Gu FL. Coupled-Perturbed SCF Approach for Calculating Static Polarizabilities and Hyperpolarizabilities with Nonorthogonal Localized Molecular Orbitals. J Chem Theory Comput 2015;11:923-31. [PMID: 26579746 DOI: 10.1021/ct500889k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Rusakova IL, Krivdin LB, Rusakov YY, Trofimov AB. Algebraic-diagrammatic construction polarization propagator approach to indirect nuclear spin–spin coupling constants. J Chem Phys 2012;137:044119. [DOI: 10.1063/1.4737181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
15
Thorvaldsen AJ, Ferrighi L, Ruud K, Ågren H, Coriani S, Jørgensen P. Analytic ab initio calculations of coherent anti-Stokes Raman scattering (CARS). Phys Chem Chem Phys 2009;11:2293-304. [DOI: 10.1039/b812045e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Thorvaldsen AJ, Ruud K, Jaszuński M. Analytic Calculations of Vibrational Hyperpolarizabilities in the Atomic Orbital Basis. J Phys Chem A 2008;112:11942-50. [DOI: 10.1021/jp806197p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
17
Sychrovský V, Vacek J, Hobza P, Žídek L, Sklenář V, Cremer D. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin−Spin Coupling Constants:  An Experimental and Quantum Chemical Investigation. J Phys Chem B 2002. [DOI: 10.1021/jp020673z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
18
Sychrovský V, Gräfenstein J, Cremer D. Nuclear magnetic resonance spin–spin coupling constants from coupled perturbed density functional theory. J Chem Phys 2000. [DOI: 10.1063/1.1286806] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
19
Zhan CG, Wan J. Generalized semiempirical relationship for calculating nuclear spin-spin coupling constants between directly bonded atoms. Chem Phys Lett 1997. [DOI: 10.1016/s0009-2614(97)01023-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
20
Nooijen M, Ajith Perera S, Bartlett RJ. Partitioned equation-of-motion coupled cluster approach to indirect nuclear spin-spin coupling constants. Chem Phys Lett 1997. [DOI: 10.1016/s0009-2614(97)00048-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
21
Perera SA, Nooijen M, Bartlett RJ. Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants. J Chem Phys 1996. [DOI: 10.1063/1.471092] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
22
Gauss J, Stanton JF. Coupled‐cluster calculations of nuclear magnetic resonance chemical shifts. J Chem Phys 1995. [DOI: 10.1063/1.470240] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Zhan CG, Ye SY, Zhu WX, Zhang CJ. A study of the correlativity between the ab initio maximum bond order hybrid orbital calculation results and the nuclear spin-spin coupling constants. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0166-1280(94)04036-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
24
Ruud K, Helgaker T, Jørgensen P, Bak KL. An ab initio nuclear magnetic resonance spectrum of vinyllithium. Chem Phys Lett 1994. [DOI: 10.1016/0009-2614(94)00705-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
25
Perera SA, Sekino H, Bartlett RJ. Coupled‐cluster calculations of indirect nuclear coupling constants: The importance of non‐Fermi contact contributions. J Chem Phys 1994. [DOI: 10.1063/1.467725] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
26
Nuclear coupling constants obtained by the equation-of-motion coupled cluster theory. Chem Phys Lett 1994. [DOI: 10.1016/0009-2614(94)87116-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
27
Geertsen J, Oddershede J, Raynes W, Marvin T. Accurateab initiocarbon-proton and proton-proton spin-spin coupling surfaces for the methane molecule. Mol Phys 1994. [DOI: 10.1080/00268979400100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
28
Sasagane K, Aiga F, Itoh R. Higher‐order response theory based on the quasienergy derivatives: The derivation of the frequency‐dependent polarizabilities and hyperpolarizabilities. J Chem Phys 1993. [DOI: 10.1063/1.466123] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
29
Fukui H, Miura K, Matsuda H, Baba T. Calculation of nuclear spin–spin couplings. VII. Electron correlation effects on the five coupling mechanisms. J Chem Phys 1992. [DOI: 10.1063/1.463121] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
30
Gauss J, Stanton JF, Bartlett RJ. Analytic evaluation of energy gradients at the coupled‐cluster singles and doubles level using quasi‐restricted Hartree–Fock open‐shell reference functions. J Chem Phys 1991. [DOI: 10.1063/1.460916] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
Čársky P, Hubač I. Restricted Hartree-Fock and unrestricted Hartree-Fock as reference states in many-body perturbation theory: a critical comparison of the two approaches. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf01117420] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
Stanton JF, Gauss J, Bartlett RJ. Potential nonrigidity of the NO3 radical. J Chem Phys 1991. [DOI: 10.1063/1.460636] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Fukui H, Miura K, Matsuda H. Calculation of the nuclear spin–spin coupling constants. VI. Many‐body perturbation theoretic calculation of electron correlation effect. J Chem Phys 1991. [DOI: 10.1063/1.460371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
34
Kucharski SA, Noga J, Bartlett RJ. Fifth‐order many‐body perturbation theory for molecular correlation energies. J Chem Phys 1989. [DOI: 10.1063/1.456206] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
35
Scuseria GE, Geertsen J, Oddershede J. Electronic spectra and response properties of BH and AlH. J Chem Phys 1989. [DOI: 10.1063/1.455975] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
36
Fukui H, Miura K, Sakurai T. Calculation of the nuclear spin–spin coupling constants. V. Configuration interaction calculation of σ‐ and π‐electron contributions. J Chem Phys 1988. [DOI: 10.1063/1.454403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
37
Salter EA, Sekino H, Bartlett RJ. Property evaluation and orbital relaxation in coupled cluster methods. J Chem Phys 1987. [DOI: 10.1063/1.453596] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA