Shew CY, Yoshikawa K. Mean field theory for the intermolecular and intramolecular conformational transitions of a single flexible polyelectrolyte chain.
J Chem Phys 2007;
126:144913. [PMID:
17444749 DOI:
10.1063/1.2714552]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diMarzio theory has been extended to elucidate the intermolecular and intramolecular phase segregations of a single flexible chain polyelectrolyte in dilute salt-free solutions. At the long chain limit, this theory yields the formalism obtained from the more sophisticated Edward Hamiltonian for polyelectrolyte problems. The calculated phase diagram exhibits the features of a first-order phase transition, with continuous and discontinuous transitions separated by a critical point. Under the discontinuous transition, the polyelectrolyte chain exhibits coexistent expanded and collapsed conformational states, same as intermolecular phase segregation. For a limiting long chain, the mean chain size at critical point is roughly 90% of the size of an ideal chain. Such a result implies that partial contraction within a chain molecule is required to collapse a flexible polyelectrolyte chain. Moreover, the theory predicts that for a longer chain, intramolecular segregated conformations differ significantly from intermolecular segregated conformations, but the difference becomes small for shorter chains. Besides, the charge needed to induce intramolecular segregation is smaller than that of intermolecular segregation for a given chain length. These findings are consistent with previous literature results.
Collapse