Nakayama T, Takahashi K, Matsumi Y, Shibuya K. N(4S) formation following the 193.3-nm ArF laser irradiation of NO and NO2 and its application to kinetic studies of N(4S) reactions with NO and NO2.
J Phys Chem A 2005;
109:10897-902. [PMID:
16331933 DOI:
10.1021/jp054089c]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of the ground-state nitrogen atom, N((4)S), following 193.3-nm ArF laser irradiation of NO and NO(2) was detected directly by a technique of laser-induced fluorescence (LIF) spectroscopy at 120.07 nm. Tunable vacuum ultraviolet (VUV) laser radiation around 120.07 nm was generated by two-photon resonance four-wave sum frequency mixing in Hg vapor. Photoexcitation processes of NO and NO(2) giving rise to the N((4)S) formation are discussed on the basis of the Doppler profiles of the nascent N((4)S) atoms produced from the photolysis of NO and NO(2) and the photolysis laser-power dependence of the N((4)S) signal intensities. Using laser flash photolysis and vacuum ultraviolet laser-induced fluorescence detection, the kinetics of the reactions of N((4)S) with NO and NO(2) have been investigated at 295 +/- 2 K. The rate constants for the reactions of N((4)S) with NO and NO(2) were determined to be (3.8 +/- 0.2) x 10(-11) and (7.3 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), respectively, where the quoted uncertainties are 2sigma statistical uncertainty including estimated systematic error.
Collapse