1
|
Anusiewicz I, Faron D, Skurski P, Simons J. Unusual and Conventional Dative Bond Formation by s 2 Lone Pair Donation from Alkaline Earth Metal Atoms to BH 3, AlH 3, and GaH 3. J Phys Chem A 2020; 124:5369-5377. [PMID: 32498519 DOI: 10.1021/acs.jpca.0c03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using ab initio electronic structure methods with flexible atomic orbital basis sets, we examined the nature of the bonding arising from donation of an ns2 electron pair on an alkaline earth atom (Mg or Ca) into a vacant n'p orbital on the group 13 atom of BH3, AlH3, or GaH3. We also examined what happens when an excess electron is attached to form corresponding molecular anions. Although the geometries of MgBH3, MgAlH3, MgGaH3, and CaBH3 are found to be much as one would expect for datively bound molecules, CaAlH3 and CaGaH3 were found to have very unusual geometries in that their Al-H or Ga-H bonds are directed toward the Ca atom rather than away, as in the other compounds. Internal electrostatic Coulomb attractions between the partially positively charged Ca center and the partially negatively charged H centers were suggested as a source of these unusual geometries. The other novel finding is that the electron affinities (EAs) of all six M'-MH3 species lie in the 0.7-1.0 eV range, which is suggestive of ionic electronic structures for the neutrals even though the partial charges on the alkaline earth centers are as low as 0.3 atomic units. Partial positive charge on the alkaline earth atoms combined with substantial electron affinities of the BH3, AlH3, and GaH3 groups, but only when distorted from planar geometries, were suggested to be the primary contributors to the large EAs.
Collapse
Affiliation(s)
- Iwona Anusiewicz
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dawid Faron
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Skurski
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Liu G, Fedik N, Martinez‐Martinez C, Ciborowski SM, Zhang X, Boldyrev AI, Bowen KH. Realization of Lewis Basic Sodium Anion in the NaBH
3
−
Cluster. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry Johns Hopkins University Baltimore MD 21218 USA
| | - Nikita Fedik
- Department of Chemistry and Biochemistry Utah State University Logan UT 84322 USA
| | | | | | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCAST) College of Chemistry Nankai University Tianjin 30007 China
| | | | - Kit H. Bowen
- Department of Chemistry Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
3
|
Liu G, Fedik N, Martinez-Martinez C, Ciborowski SM, Zhang X, Boldyrev AI, Bowen KH. Realization of Lewis Basic Sodium Anion in the NaBH 3 - Cluster. Angew Chem Int Ed Engl 2019; 58:13789-13793. [PMID: 31313422 DOI: 10.1002/anie.201907089] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/22/2022]
Abstract
We report a Na:- →B dative bond in the NaBH3 - cluster, which was designed on the principle of minimum-energy rupture, prepared by laser vaporization, and characterized by a synergy of anion photoelectron spectroscopy and electronic structure calculations. The global minimum of NaBH3 - features a Na-B bond. Its preferred heterolytic dissociation conforms with the IUPAC definition of dative bond. The lone electron pair revealed on Na and the negative Laplacian of electron density at the bond critical point further confirm the dative nature of the Na-B bond. This study represents the first example of a Lewis adduct with an alkalide as the Lewis base.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Nikita Fedik
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | | | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Alexander I Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
4
|
de Sousa DWO, Nascimento MAC. One-electron bonds are not "half-bonds". Phys Chem Chem Phys 2019; 21:13319-13336. [PMID: 31184654 DOI: 10.1039/c9cp02209k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the success of the molecular orbital (MO) and valence-bond (VB) models to describe the electronic structure and properties of molecules, neither MO nor VB provides an explanation for the nature of the chemical bond. The first to address this problem was Ruedenberg, who showed that chemical bonds result from quantum interference. He developed a method to calculate the interference contribution to the total electronic energy and density and applied it to molecules containing typical two-centre two-electron (2c-2e) covalent bonds. To test the generality of Ruedenberg's hypothesis, we developed a powerful Interference Energy Analysis (IEA) method to calculate the interference contributions of individual chemical bonds to the total energy of diatomic and polyatomic molecules, and showed that any two-electron bond, despite its polarity, results from quantum interference. Nevertheless, many stable molecules are experimentally known whose chemical structures clearly indicate the existence of two-centre one-electron bonds (2c-1e). Therefore, the question remains if quantum interference will be the dominant effect for these systems. This work describes the extension of the IEA for treating two-centre one-electron bonds, making use of a Generalised Product Function (GPF) built from spin coupled wave functions of N electrons in M orbitals, SC(N,M). Several diatomic and polyatomic molecules were analysed and whenever possible the results were compared with the analogous case of a two-electron bond. The results indicate that interference is the dominant effect for the one-electron bonds, which reinforces the role of quantum interference as the central element in chemical bonding theory.
Collapse
Affiliation(s)
- David Wilian Oliveira de Sousa
- Instituto de Química, Universidade Federal do Rio de Janeiro Cidade Universitária, CT Bloco A Sala 412, Rio de Janeiro, RJ 21941-909, Brazil.
| | | |
Collapse
|
5
|
|
6
|
Anusiewicz I, Skurski P. Attaching Be or Mg to BH3 results in the formation of BeBH3 and MgBH3 molecules capable of forming stable anions. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Govoni M, Galli G. GW100: Comparison of Methods and Accuracy of Results Obtained with the WEST Code. J Chem Theory Comput 2018; 14:1895-1909. [PMID: 29397712 DOI: 10.1021/acs.jctc.7b00952] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reproducibility of calculations carried out within many-body perturbation theory at the G0 W0 level is assessed for 100 closed shell molecules and compared to that of density functional theory. We consider vertical ionization potentials (VIP) and electron affinities (VEA) obtained with five different codes: BerkeleyGW, FHI-aims, TURBOMOLE, VASP, and WEST. We review the approximations and parameters that control the accuracy of G0 W0 results in each code, and we discuss in detail the effect of extrapolation techniques for the parameters entering the WEST code. Differences between the VIP and VEA computed with the various codes are within ∼60 and ∼120 meV, respectively, which is up to four times larger than in the case of the best results obtained with DFT codes. Vertical ionization potentials are validated against experiment and CCSD(T) quantum chemistry results showing a mean absolute relative error of ∼4% for data obtained with WEST. Our analysis of the differences between localized orbitals and plane-wave implementations points out molecules containing Cu, I, Ga, and Xe as major sources of discrepancies, which call for a re-evaluation of the pseudopotentials used for these systems in G0 W0 calculations.
Collapse
Affiliation(s)
- Marco Govoni
- Institute for Molecular Engineering and Materials Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Giulia Galli
- Institute for Molecular Engineering and Materials Science Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|
8
|
Lin MY, Huang TP, Chin CH, Wu YJ. Formation and identification of borane radical anions isolated in solid argon. J Chem Phys 2018; 148:074307. [DOI: 10.1063/1.5016869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Meng-Yeh Lin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Tzu-Ping Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Chih-Hao Chin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Yu-Jong Wu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
9
|
Maggio E, Liu P, van Setten MJ, Kresse G. GW100: A Plane Wave Perspective for Small Molecules. J Chem Theory Comput 2017; 13:635-648. [DOI: 10.1021/acs.jctc.6b01150] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emanuele Maggio
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Peitao Liu
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
- Institute
of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Michiel J. van Setten
- Nanoscopic
Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Georg Kresse
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Brzeski J, Czapla M, Skurski P, Simons J. Selected boron, aluminum, and gallium trihalide and trihydride anions. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Bamford KL, Chitnis SS, Stoddard RL, McIndoe JS, Burford N. Bond fission in monocationic frameworks: diverse fragmentation pathways for phosphinophosphonium cations. Chem Sci 2016; 7:2544-2552. [PMID: 28660025 PMCID: PMC5477047 DOI: 10.1039/c5sc03804a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
A series of phosphinophosphonium cations ([R2PPMe3]+; R = Me, Et, i Pr, t Bu, Cy, Ph and N i Pr2) have been prepared and examined by collision-induced dissociation (CID) to determine the fragmentation pathways accessible to these prototypical catena-phosphorus cations in the gas-phase. Experimental evidence for fission of P-P and P-E (E = P, C) bonds, and β-hydride elimination has been obtained. Comparison of appearance potentials for the P-P bond dissociation fragments [R2P]+ (P-P heterolysis) and [PMe3]+˙ (P-P homolysis) shows that heterolytic P-P cleavage is more sensitive than P-P homolysis towards changes in substitution at the trivalent phosphorus center. The facility of β-hydride elimination increases with the steric bulk of R in [R2PPMe3]+. A density functional theory (DFT) study modelling these observed processes in gas-phase, counterion- and solvent-free conditions, to mimic the mass spectrometric environment, was performed for derivatives of [R2PPMe3]+ (R = Me, Et, i Pr, t Bu, Ph and N i Pr2), showing good agreement with experimental trends. The unusual observation of both homolytic and heterolytic cleavage pathways for the P-P and P-C bonds reveals new insight into the fundamental aspects of bonding in monocations and undermines the use of simplistic bonding models.
Collapse
Affiliation(s)
- Karlee L Bamford
- Department of Chemistry , University of Victoria , P.O. Box 3065, Stn CSC , Victoria , BC V8W 3V6 , Canada . ; ; ; Tel: +1 250-721-7150 ; Tel: +1 250-721-7181
| | - Saurabh S Chitnis
- Department of Chemistry , University of Victoria , P.O. Box 3065, Stn CSC , Victoria , BC V8W 3V6 , Canada . ; ; ; Tel: +1 250-721-7150 ; Tel: +1 250-721-7181
| | - Rhonda L Stoddard
- Department of Chemistry , University of Victoria , P.O. Box 3065, Stn CSC , Victoria , BC V8W 3V6 , Canada . ; ; ; Tel: +1 250-721-7150 ; Tel: +1 250-721-7181
| | - J Scott McIndoe
- Department of Chemistry , University of Victoria , P.O. Box 3065, Stn CSC , Victoria , BC V8W 3V6 , Canada . ; ; ; Tel: +1 250-721-7150 ; Tel: +1 250-721-7181
| | - Neil Burford
- Department of Chemistry , University of Victoria , P.O. Box 3065, Stn CSC , Victoria , BC V8W 3V6 , Canada . ; ; ; Tel: +1 250-721-7150 ; Tel: +1 250-721-7181
| |
Collapse
|
12
|
Chitnis SS, Whalen JM, Burford N. Influence of Charge and Coordination Number on Bond Dissociation Energies, Distances, and Vibrational Frequencies for the Phosphorus–Phosphorus Bond. J Am Chem Soc 2014; 136:12498-506. [PMID: 25105886 DOI: 10.1021/ja507413s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saurabh S. Chitnis
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada
| | - J. Marc Whalen
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada
| | - Neil Burford
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada
| |
Collapse
|
13
|
Grant DJ, Dixon DA, Camaioni D, Potter RG, Christe KO. Lewis acidities and hydride, fluoride, and X- affinities of the BH(3-n)Xn compounds for (X = F, Cl, Br, I, NH2, OH, and SH) from coupled cluster theory. Inorg Chem 2009; 48:8811-21. [PMID: 19697951 DOI: 10.1021/ic901092x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomization energies at 0 K and enthalpies of formation at 0 and 298 K are predicted for the BH(4-n)X(n)(-) and the BH(3-n)X(n)F(-) compounds for (X = F, Cl, Br, I, NH(2), OH, and SH) from coupled cluster theory (CCSD(T)) calculations with correlation-consistent basis sets and with an effective core potential on I. To achieve near chemical accuracy (+/-1.0 kcal/mol), additional corrections were added to the complete basis set binding energies. The hydride, fluoride, and X(-) affinities of the BH(3-n)X(n) compounds were predicted. Although the hydride and fluoride affinities differ somewhat in their magnitudes, they show very similar trends and are both suitable for judging the Lewis acidities of compounds. The only significant differences in their acidity strength orders are found for the boranes substituted with the strongly electron withdrawing and back-donating fluorine and hydroxyl ligands. The highest H(-) and F(-) affinities are found for BI(3) and the lowest ones for B(NH(2))(3). Within the boron trihalide series, the Lewis acidity increases monotonically with increasing atomic weight of the halogen, that is, BI(3) is a considerably stronger Lewis acid than BF(3). For the X(-) affinities in the BX(3), HBX(2), and H(2)BX series, the fluorides show the highest values, whereas the amino and mercapto compounds show the lowest ones. Hydride and fluoride affinities of the BH(3-n)X(n) compounds exhibit linear correlations with the proton affinity of X(-) for most X ligands. Reasons for the correlation are discussed. A detailed analysis of the individual contributions to the Lewis acidities of these substituted boranes shows that the dominant effect in the magnitude of the acidity is the strength of the BX(3)(-)-F bond. The main contributor to the relative differences in the Lewis acidities of BX(3) for X, a halogen, is the electron affinity of BX(3) with a secondary contribution from the distortion energy from planar to pyramidal BX(3). The B-F bond dissociation energy of X(3)B-F(-) and the distortion energy from pyramidal to tetrahedral BX(3)(-) are of less importance in determining the relative acidities. Because the electron affinity of BX(3) is strongly influenced by the charge density in the empty p(z) lowest unoccupied molecular orbital of boron, the amount of pi-back-donation from the halogen to boron is crucial and explains why the Lewis acidity of BF(3) is significantly lower than those of BX(3) with X = Cl, Br, and I.
Collapse
Affiliation(s)
- Daniel J Grant
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, USA
| | | | | | | | | |
Collapse
|
14
|
Raabe I, Himmel D, Krossing I. Computational Study of the Enthalpies of Formation, ΔfH°, and Mean Bond Enthalpies, mBEs, of H4-nEXn0/- and H3-nEXn+/0 (E = C, B; X = F−I). J Phys Chem A 2007; 111:13209-17. [DOI: 10.1021/jp073725z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ines Raabe
- Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, D-79104 Freiburg i. Br., Germany
| | - Daniel Himmel
- Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, D-79104 Freiburg i. Br., Germany
| | - Ingo Krossing
- Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, D-79104 Freiburg i. Br., Germany
| |
Collapse
|
15
|
Dixon DA, Gutowski M. Thermodynamic properties of molecular borane amines and the [BH4-][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory. J Phys Chem A 2007; 109:5129-35. [PMID: 16833867 DOI: 10.1021/jp0445627] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heats of formation for the borane amines BH3NH3, BH2NH2, and HBNH, tetrahedral BH4-, and the BN molecule have been calculated by using ab initio molecular orbital theory. Coupled cluster calculations with single and double excitations and perturbative triples (CCSD(T)) were employed for the total valence electronic energies. Correlation consistent basis sets were used, up through the augmented quadruple-zeta, to extrapolate to the complete basis set limit. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. Geometries were calculated at the CCSD(T) level up through at least aug-cc-pVTZ and frequencies were calculated at the CCSD(T)/aug-cc-pVDZ level. The heats of formation (in kcal/mol) at 0 K in the gas phase are Delta Hf(BH3NH3) = -9.1, Delta Hf(BH2NH2) = -15.9, Delta Hf(BHNH) = 13.6, Delta Hf(BN) = 146.4, and Delta Hf(BH4-) = -11.6. The reported experimental value for Delta Hf(BN) is clearly in error. The heat of formation of the salt [BH4-][NH4+](s) has been estimated by using an empirical expression for the lattice energy and the calculated heats of formation of the two component ions. The calculations show that both BH3NH3(g) and [BH4-][NH4+](s) can serve as good hydrogen storage systems which release H2 in a slightly exothermic process. The hydride affinity of BH3 is calculated to be 72.2 kcal/mol, in excellent agreement with the experimental value at 298 K of 74.2 +/- 2.8 kcal/mol.
Collapse
Affiliation(s)
- David A Dixon
- Department of Chemistry, University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA
| | | |
Collapse
|
16
|
Grant DJ, Dixon DA. Thermodynamic Properties of Molecular Borane Phosphines, Alane Amines, and Phosphine Alanes and the [BH4-][PH4+], [AlH4-][NH4+], and [AlH4-][PH4+] Salts for Chemical Hydrogen Storage Systems from ab Initio Electronic Structure Theory. J Phys Chem A 2005; 109:10138-47. [PMID: 16838934 DOI: 10.1021/jp054152y] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heats of formation for the molecules BH(3)PH(3), BH(2)PH(2), HBPH, AlH(3)NH(3), AlH(2)NH(2), HAlNH, AlH(3)PH(3), AlH(2)PH(2), HAlPH, AlH(4)(-), PH(3), PH(4), and PH(4)(+), as well as the diatomics BP, AlN, and AlP, have been calculated by using ab initio molecular orbital theory. The coupled cluster with single and double excitations and perturbative triples method (CCSD(T)) was employed for the total valence electronic energies. Correlation consistent basis sets were used, up through the augmented quadruple-zeta, to extrapolate to the complete basis set limit. Additional d core functions were used for Al and P. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. Geometries were calculated at the CCSD(T) level up through at least aug-cc-pVTZ and frequencies were calculated at the CCSD(T)/aug-cc-pVDZ level. The heats of formation of the salts [BH(4)(-)][PH(4)(+)](s), [AlH(4)(-)][NH(4)(+)](s), and [AlH(4)(-)][PH(4)(+)](s) have been estimated by using an empirical expression for the lattice energy and the calculated heats of formation of the two component ions. The calculations show that both AlH(3)NH(3)(g) and [AlH(4)(-)][NH(4)(+)](s) can serve as good hydrogen storage systems that release H(2) in a slightly exothermic process. In addition, AlH(3)PH(3) and the salts [AlH(4)(-)][PH(4)(+)] and [BH(4)(-)][PH(4)(+)] have the potential to serve as H(2) storage systems. The hydride affinity of AlH(3) is calculated to be -70.4 kcal/mol at 298 K. The proton affinity of PH(3) is calculated to be 187.8 kcal/mol at 298 K in excellent agreement with the experimental value of 188 kcal/mol. PH(4) is calculated to be barely stable with respect to loss of a hydrogen to form PH(3).
Collapse
Affiliation(s)
- Daniel J Grant
- Department of Chemistry, University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487-0336, USA
| | | |
Collapse
|
17
|
Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 2002; 102:231-82. [PMID: 11782134 DOI: 10.1021/cr990044u] [Citation(s) in RCA: 858] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
The Generalized Multiconfiguration Spin-Coupled method, STO optimization, and the electronic structure of BH3 in its ground state. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1380-7323(02)80011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Marian C, Gastreich M. A systematic theoretical study of molecular Si/N, B/N, and Si/B/N(H) compounds and parameterisation of a force-field for molecules and solids. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(00)00406-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Kabalka GW, Guindi LH. Boron: Boranes in organic synthesis. Annual survey covering the year 1989. J Organomet Chem 1993. [DOI: 10.1016/0022-328x(93)80491-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|