Rastogi RP, Chand P, Pandey MK, Das M. Dual Control Mechanism in a Belousov−Zhabotinskii (B−Z) Oscillator with Glucose and Oxalic Acid as a Double Substrate.
J Phys Chem A 2005;
109:4562-7. [PMID:
16833792 DOI:
10.1021/jp0580524]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oscillations in a Belousov-Zhabotinskii (B-Z) system having oxalic acid (OA) and glucose (G) as a mixed organic substrate, neither of which acts as a bromine scavenger, have been investigated. Studies have been performed for (i) varying the concentration of G while keeping the OA concentration fixed and (ii) varying OA but keeping G fixed in a batch reactor. In both cases upper and lower critical limits occur, between which oscillations are observed. Both single and double frequency oscillations have been observed in a wide range of concentrations of G as well as of OA. The induction period in most of the cases was <1 min. When G is fixed and OA is varied, the time pause between the sequential oscillations increases with an increase in OA. On the other hand when OA is fixed and G is varied, the time-pause decreases with an increase in G. The first type of oscillation is Br(-)-controlled, whereas the second is non-Br(-)-controlled. The order of addition of G and OA in the last has no influence on the induction period. It influences, however, the oscillatory characteristics. Br(2) evolution in the G + OA + Ce(4+) + BrO(3)(-) + H(2)SO(4) reaction system has been investigated spectrophotometrically. ESR and polymerization studies indicate the important role of free radicals in influencing the reaction mechanism. A tentative dual control mechanism has been suggested involving autocatalysis of HBrO(2) and BrO2*.
Collapse